AI最新文献

筛选
英文 中文
Optimized Financial Planning: Integrating Individual and Cooperative Budgeting Models with LLM Recommendations 优化财务规划:将个人和合作预算编制模型与 LLM 建议相结合
AI Pub Date : 2023-12-25 DOI: 10.3390/ai5010006
I. de Zarzà, J. de Curtò, Gemma Roig, C. T. Calafate
{"title":"Optimized Financial Planning: Integrating Individual and Cooperative Budgeting Models with LLM Recommendations","authors":"I. de Zarzà, J. de Curtò, Gemma Roig, C. T. Calafate","doi":"10.3390/ai5010006","DOIUrl":"https://doi.org/10.3390/ai5010006","url":null,"abstract":"In today’s complex economic environment, individuals and households alike grapple with the challenge of financial planning. This paper introduces novel methodologies for both individual and cooperative (household) financial budgeting. We firstly propose an optimization framework for individual budget allocation, aiming to maximize savings by efficiently distributing monthly income among various expense categories. We then extend this model to households, wherein the complexity of handling multiple incomes and shared expenses is addressed. The cooperative model prioritizes not only maximized savings but also the preferences and needs of each member, fostering a harmonious financial environment, whether they are short-term needs or long-term aspirations. A notable innovation in our approach is the integration of recommendations from a large language model (LLM). Given its vast training data and potent inferential capabilities, the LLM provides initial feasible solutions to our optimization problems, acting as a guiding beacon for individuals and households unfamiliar with the nuances of financial planning. Our preliminary results indicate that the LLM-recommended solutions result in budget plans that are both economically sound, meaning that they are consistent with established financial management principles and promote fiscal resilience and stability, and aligned with the financial goals and preferences of the concerned parties. This integration of AI-driven recommendations with econometric models, as an instantiation of an extended coevolutionary (EC) theory, paves the way for a new era in financial planning, making it more accessible and effective for a wider audience, as we propose an example of a new theory in economics where human behavior can be greatly influenced by AI agents.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139159155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of YOLOv8 and Detectron2 for Bullet Hole Detection and Score Calculation from Shooting Cards 应用 YOLOv8 和 Detectron2 检测射击卡上的弹孔并计算得分
AI Pub Date : 2023-12-22 DOI: 10.3390/ai5010005
Marya Butt, Nick Glas, Jaimy Monsuur, Ruben Stoop, Ander de Keijzer
{"title":"Application of YOLOv8 and Detectron2 for Bullet Hole Detection and Score Calculation from Shooting Cards","authors":"Marya Butt, Nick Glas, Jaimy Monsuur, Ruben Stoop, Ander de Keijzer","doi":"10.3390/ai5010005","DOIUrl":"https://doi.org/10.3390/ai5010005","url":null,"abstract":"Scoring targets in shooting sports is a crucial and time-consuming task that relies on manually counting bullet holes. This paper introduces an automatic score detection model using object detection techniques. The study contributes to the field of computer vision by comparing the performance of seven models (belonging to two different architectural setups) and by making the dataset publicly available. Another value-added aspect is the inclusion of three variants of the object detection model, YOLOv8, recently released in 2023 (at the time of writing). Five of the used models are single-shot detectors, while two belong to the two-shot detectors category. The dataset was manually captured from the shooting range and expanded by generating more versatile data using Python code. Before the dataset was trained to develop models, it was resized (640 × 640) and augmented using Roboflow API. The trained models were then assessed on the test dataset, and their performance was compared using matrices like mAP50, mAP50-90, precision, and recall. The results showed that YOLOv8 models can detect multiple objects with good confidence scores. Among these models, YOLOv8m performed the best, with the highest mAP50 value of 96.7%, followed by the performance of YOLOv8s with the mAP50 value of 96.5%. It is suggested that if the system is to be implemented in a real-time environment, YOLOv8s is a better choice since it took significantly less inference time (2.3 ms) than YOLOv8m (5.7 ms) and yet generated a competitive mAP50 of 96.5%.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139164894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data Science in Finance: Challenges and Opportunities 金融领域的数据科学:挑战与机遇
AI Pub Date : 2023-12-22 DOI: 10.3390/ai5010004
Xianrong Zheng, Elizabeth Gildea, Sheng Chai, Tongxiao Zhang, Shuxi Wang
{"title":"Data Science in Finance: Challenges and Opportunities","authors":"Xianrong Zheng, Elizabeth Gildea, Sheng Chai, Tongxiao Zhang, Shuxi Wang","doi":"10.3390/ai5010004","DOIUrl":"https://doi.org/10.3390/ai5010004","url":null,"abstract":"Data science has become increasingly popular due to emerging technologies, including generative AI, big data, deep learning, etc. It can provide insights from data that are hard to determine from a human perspective. Data science in finance helps to provide more personal and safer experiences for customers and develop cutting-edge solutions for a company. This paper surveys the challenges and opportunities in applying data science to finance. It provides a state-of-the-art review of financial technologies, algorithmic trading, and fraud detection. Also, the paper identifies two research topics. One is how to use generative AI in algorithmic trading. The other is how to apply it to fraud detection. Last but not least, the paper discusses the challenges posed by generative AI, such as the ethical considerations, potential biases, and data security.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139165197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI Advancements: Comparison of Innovative Techniques 人工智能的进步:创新技术比较
AI Pub Date : 2023-12-20 DOI: 10.3390/ai5010003
Hamed Taherdoost, Mitra Madanchian
{"title":"AI Advancements: Comparison of Innovative Techniques","authors":"Hamed Taherdoost, Mitra Madanchian","doi":"10.3390/ai5010003","DOIUrl":"https://doi.org/10.3390/ai5010003","url":null,"abstract":"In recent years, artificial intelligence (AI) has seen remarkable advancements, stretching the limits of what is possible and opening up new frontiers. This comparative review investigates the evolving landscape of AI advancements, providing a thorough exploration of innovative techniques that have shaped the field. Beginning with the fundamentals of AI, including traditional machine learning and the transition to data-driven approaches, the narrative progresses through core AI techniques such as reinforcement learning, generative adversarial networks, transfer learning, and neuroevolution. The significance of explainable AI (XAI) is emphasized in this review, which also explores the intersection of quantum computing and AI. The review delves into the potential transformative effects of quantum technologies on AI advancements and highlights the challenges associated with their integration. Ethical considerations in AI, including discussions on bias, fairness, transparency, and regulatory frameworks, are also addressed. This review aims to contribute to a deeper understanding of the rapidly evolving field of AI. Reinforcement learning, generative adversarial networks, and transfer learning lead AI research, with a growing emphasis on transparency. Neuroevolution and quantum AI, though less studied, show potential for future developments.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139168264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Time Series Approach to Smart City Transformation: The Problem of Air Pollution in Brescia 智能城市转型的时间序列方法:布雷西亚的空气污染问题
AI Pub Date : 2023-12-20 DOI: 10.3390/ai5010002
Elena Pagano, Enrico Barbierato
{"title":"A Time Series Approach to Smart City Transformation: The Problem of Air Pollution in Brescia","authors":"Elena Pagano, Enrico Barbierato","doi":"10.3390/ai5010002","DOIUrl":"https://doi.org/10.3390/ai5010002","url":null,"abstract":"Air pollution is a paramount issue, influenced by a combination of natural and anthropogenic sources, various diffusion modes, and profound repercussions for the environment and human health. Herein, the power of time series data becomes evident, as it proves indispensable for capturing pollutant concentrations over time. These data unveil critical insights, including trends, seasonal and cyclical patterns, and the crucial property of stationarity. Brescia, a town located in Northern Italy, faces the pressing challenge of air pollution. To enhance its status as a smart city and address this concern effectively, statistical methods employed in time series analysis play a pivotal role. This article is dedicated to examining how ARIMA and LSTM models can empower Brescia as a smart city by fitting and forecasting specific pollution forms. These models have established themselves as effective tools for predicting future pollution levels. Notably, the intricate nature of the phenomena becomes apparent through the high variability of particulate matter. Even during extraordinary events like the COVID-19 lockdown, where substantial reductions in emissions were observed, the analysis revealed that this reduction did not proportionally decrease PM2.5 and PM10 concentrations. This underscores the complex nature of the issue and the need for advanced data-driven solutions to make Brescia a truly smart city.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139169681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Time Window Analysis for Time-Critical Decision Systems with Applications on Sports Climbing 时间关键型决策系统的时间窗分析及其在体育攀登中的应用
AI Pub Date : 2023-12-19 DOI: 10.3390/ai5010001
Heiko Oppel, Michael Munz
{"title":"A Time Window Analysis for Time-Critical Decision Systems with Applications on Sports Climbing","authors":"Heiko Oppel, Michael Munz","doi":"10.3390/ai5010001","DOIUrl":"https://doi.org/10.3390/ai5010001","url":null,"abstract":"Human monitoring systems are already utilized in various fields like assisted living, healthcare or sport and fitness. They are able to support in everyday life or act as a pre-warning system. We developed a system to monitor the ascent of a sport climber. It is integrated in a belay device. This paper presents the first time series analysis regarding the fall of a climber utilizing such a system. A Convolutional Neural Network handles the feature engineering part of the sensor information as well as the classification of the task at hand. In this way, the time is implicitly considered by the network. An analysis regarding the size of the time window was carried out with a focus on exploring the respective results. The neural network models were then tested against an already-existing principle based on a mechanical mechanism. We show that the size of the time window is a decisive factor in a time critical system. Depending on the size of the window, the mechanical principle was able to outperform the neural network. Nevertheless, most of our models outperformed the basic principle and returned promising results in predicting the fall of a climber within up to 91.8 ms.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139171974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adapting the Parameters of RBF Networks Using Grammatical Evolution 利用语法进化调整 RBF 网络参数
AI Pub Date : 2023-12-11 DOI: 10.3390/ai4040054
I. Tsoulos, Alexandros T. Tzallas, E. Karvounis
{"title":"Adapting the Parameters of RBF Networks Using Grammatical Evolution","authors":"I. Tsoulos, Alexandros T. Tzallas, E. Karvounis","doi":"10.3390/ai4040054","DOIUrl":"https://doi.org/10.3390/ai4040054","url":null,"abstract":"Radial basis function networks are widely used in a multitude of applications in various scientific areas in both classification and data fitting problems. These networks deal with the above problems by adjusting their parameters through various optimization techniques. However, an important issue to address is the need to locate a satisfactory interval for the parameters of a network before adjusting these parameters. This paper proposes a two-stage method. In the first stage, via the incorporation of grammatical evolution, rules are generated to create the optimal value interval of the network parameters. During the second stage of the technique, the mentioned parameters are fine-tuned with a genetic algorithm. The current work was tested on a number of datasets from the recent literature and found to reduce the classification or data fitting error by over 40% on most datasets. In addition, the proposed method appears in the experiments to be robust, as the fluctuation of the number of network parameters does not significantly affect its performance.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139183236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI and Regulations 人工智能与法规
AI Pub Date : 2023-11-29 DOI: 10.3390/ai4040052
Paul Dumouchel
{"title":"AI and Regulations","authors":"Paul Dumouchel","doi":"10.3390/ai4040052","DOIUrl":"https://doi.org/10.3390/ai4040052","url":null,"abstract":"This essay argues that the popular misrepresentation of the nature of AI has important consequences concerning how we view the need for regulations. Considering AI as something that exists in itself, rather than as a set of cognitive technologies whose characteristics—physical, cognitive, and systemic—are quite different from ours (and that, at times, differ widely among the technologies) leads to inefficient approaches to regulation. This paper aims at helping the practitioners of responsible AI to address the way in which the technical aspects of the tools they are developing and promoting directly have important social and political consequences.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139212610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chat GPT in Diagnostic Human Pathology: Will It Be Useful to Pathologists? A Preliminary Review with ‘Query Session’ and Future Perspectives 人体病理学诊断中的 GPT 聊天:它对病理学家有用吗?初步回顾与 "查询会话 "及未来展望
AI Pub Date : 2023-11-22 DOI: 10.3390/ai4040051
Gerardo Cazzato, Marialessandra Capuzzolo, Paola Parente, F. Arezzo, Vera Loizzi, Enrica Macorano, Andrea Marzullo, Gennaro Cormio, G. Ingravallo
{"title":"Chat GPT in Diagnostic Human Pathology: Will It Be Useful to Pathologists? A Preliminary Review with ‘Query Session’ and Future Perspectives","authors":"Gerardo Cazzato, Marialessandra Capuzzolo, Paola Parente, F. Arezzo, Vera Loizzi, Enrica Macorano, Andrea Marzullo, Gennaro Cormio, G. Ingravallo","doi":"10.3390/ai4040051","DOIUrl":"https://doi.org/10.3390/ai4040051","url":null,"abstract":"The advent of Artificial Intelligence (AI) has in just a few years supplied multiple areas of knowledge, including in the medical and scientific fields. An increasing number of AI-based applications have been developed, among which conversational AI has emerged. Regarding the latter, ChatGPT has risen to the headlines, scientific and otherwise, for its distinct propensity to simulate a ‘real’ discussion with its interlocutor, based on appropriate prompts. Although several clinical studies using ChatGPT have already been published in the literature, very little has yet been written about its potential application in human pathology. We conduct a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, using PubMed, Scopus and the Web of Science (WoS) as databases, with the following keywords: ChatGPT OR Chat GPT, in combination with each of the following: pathology, diagnostic pathology, anatomic pathology, before 31 July 2023. A total of 103 records were initially identified in the literature search, of which 19 were duplicates. After screening for eligibility and inclusion criteria, only five publications were ultimately included. The majority of publications were original articles (n = 2), followed by a case report (n = 1), letter to the editor (n = 1) and review (n = 1). Furthermore, we performed a ‘query session’ with ChatGPT regarding pathologies such as pigmented skin lesions, malignant melanoma and variants, Gleason’s score of prostate adenocarcinoma, differential diagnosis between germ cell tumors and high grade serous carcinoma of the ovary, pleural mesothelioma and pediatric diffuse midline glioma. Although the premises are exciting and ChatGPT is able to co-advise the pathologist in providing large amounts of scientific data for use in routine microscopic diagnostic practice, there are many limitations (such as data of training, amount of data available, ‘hallucination’ phenomena) that need to be addressed and resolved, with the caveat that an AI-driven system should always provide support and never a decision-making motive during the histopathological diagnostic process.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139249306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Tuta absoluta Detection on Tomato Plants: Ensemble Techniques and Deep Learning 增强番茄植株上 Tuta absoluta 的检测:集合技术和深度学习
AI Pub Date : 2023-11-20 DOI: 10.3390/ai4040050
Nikolaos Giakoumoglou, E. Pechlivani, Nikolaos Frangakis, Dimitrios Tzovaras
{"title":"Enhancing Tuta absoluta Detection on Tomato Plants: Ensemble Techniques and Deep Learning","authors":"Nikolaos Giakoumoglou, E. Pechlivani, Nikolaos Frangakis, Dimitrios Tzovaras","doi":"10.3390/ai4040050","DOIUrl":"https://doi.org/10.3390/ai4040050","url":null,"abstract":"Early detection and efficient management practices to control Tuta absoluta (Meyrick) infestation is crucial for safeguarding tomato production yield and minimizing economic losses. This study investigates the detection of T. absoluta infestation on tomato plants using object detection models combined with ensemble techniques. Additionally, this study highlights the importance of utilizing a dataset captured in real settings in open-field and greenhouse environments to address the complexity of real-life challenges in object detection of plant health scenarios. The effectiveness of deep-learning-based models, including Faster R-CNN and RetinaNet, was evaluated in terms of detecting T. absoluta damage. The initial model evaluations revealed diminishing performance levels across various model configurations, including different backbones and heads. To enhance detection predictions and improve mean Average Precision (mAP) scores, ensemble techniques were applied such as Non-Maximum Suppression (NMS), Soft Non-Maximum Suppression (Soft NMS), Non-Maximum Weighted (NMW), and Weighted Boxes Fusion (WBF). The outcomes shown that the WBF technique significantly improved the mAP scores, resulting in a 20% improvement from 0.58 (max mAP from individual models) to 0.70. The results of this study contribute to the field of agricultural pest detection by emphasizing the potential of deep learning and ensemble techniques in improving the accuracy and reliability of object detection models.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139255477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信