Caofeng Yu, Kun Yang, Jingjing Peng, Yijun Wei, Gang Shen, Baokun Li
{"title":"Large-stroke and high-precision coaxial integrated macro-micro composite actuator based on VCM and GMA","authors":"Caofeng Yu, Kun Yang, Jingjing Peng, Yijun Wei, Gang Shen, Baokun Li","doi":"10.3233/jae-230236","DOIUrl":"https://doi.org/10.3233/jae-230236","url":null,"abstract":"A coaxially integrated macro-micro composite actuator (MMCA) with large stroke and high accuracy is proposed by combining a voice coil motor (VCM) with the giant magnetostrictive actuator (GMA). The magnetic circuit model of the macro-motion part is established based on the driving principle of VCM, and the multi-field coupling model of the micro-motion part is established based on the Jiles-Atherton model. The finite element method was used to analyze the relationship between displacement, output force, velocity, acceleration, and time of the macro-motion part under different currents, the magnetic flux density, output force, and displacement curves of the micro-motion part, and the mutual influence between the macro and micro motion parts were analyzed. The prototype of the MMCA was developed, and an experimental test platform was built. The results show that the MMCA macro-motion displacement curve can fit the simulation curve well during open-loop positioning, and when the current size of the input macro-motion coil is 4 A, the experimental curve of the MMCA is the most consistent with the simulation curve. When closed-loop control, the motion curve of the drive can well follow the set displacement curve, in which the maximum stroke of the prototype developed is 50 mm, the positioning error of the macro-motion part is less than 20 μm, the maximum stroke of the micro-motion part is 40 μm, and the overall positioning accuracy of the MMCA is 0.14 μm. The research results provide a new idea and theoretical basis for further optimization and development of precision positioning platform with high precision and large stroke.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"37 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two complementary examples of electrification in the cement industry","authors":"Koen Van Reusel","doi":"10.3233/jae-230215","DOIUrl":"https://doi.org/10.3233/jae-230215","url":null,"abstract":"The European “Horizon 2020” LEILAC and DESTINY projects are two examples of electrification in the cement industry. LEILAC shows how resistance heating can be applied as a substitution of an existing gas-supplied process. The use of microwave heating in the DESTINY project illustrates the downscaling of the production paradigm towards small on-site-of-demand cement production, allowing a further reduction in CO2 emission.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"32 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and test of capacitive power transfer coupling for wound field synchronous machines","authors":"Rayane Hamidouche, Smail Mezani, Thierry Lubin, Tahar Hamiti","doi":"10.3233/jae-230245","DOIUrl":"https://doi.org/10.3233/jae-230245","url":null,"abstract":"This paper deals with the design and test of a contactless capacitive power converter operating at a frequency of 1 MHz, intended to supply the excitation winding of an 80 kW wound rotor synchronous machine. The methodology integrates the electromagnetic design of the rotor and its impact on the different parameters of the converter. To verify the validity of the concept, a first prototype was built by using surface-mounted capacitors grounded on the structure of a 1 MHz Class E resonant power converter. Then, a more representative capacitive contactless coupler was designed and implemented. Comparisons between simulation and experimental results have shown the limits of the proposed contactless power transmission. Special attention was paid on losses and efficiency which are crucial for this application.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"7 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michał Mysiński, Cezary Jędryczka, Andrzej Demenko, Łukasz Macyszyn
{"title":"Analysis of current linkage harmonics in multi-phase machines with distributed windings","authors":"Michał Mysiński, Cezary Jędryczka, Andrzej Demenko, Łukasz Macyszyn","doi":"10.3233/jae-230242","DOIUrl":"https://doi.org/10.3233/jae-230242","url":null,"abstract":"The paper presents the results of research on the spatial distribution of the multi-phase, distributed windings in electric machines. The focus was on the analysis of the harmonics of the current linkage spatial distributions. To perform calculations for different windings patterns, taking into account the number of phases, pole pairs, and the number q of slots per pole and phase, the dedicated code was developed in the Matlab environment. Nine different multi-phase windings were studied, for which magnetomotive force (MMF) was determined to investigate the harmonic content and total harmonic distortion. The obtained results were compared with a reference three-phase symmetric system. Studies were also carried out on torque ripple and power density for different numbers of winding phases.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"68 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junda Zhu, Sami Barmada, Massimo Ceraolo, Nunzia Fontana, Antonino Musolino
{"title":"Resonant coil matrix shielding for dynamic WPT systems","authors":"Junda Zhu, Sami Barmada, Massimo Ceraolo, Nunzia Fontana, Antonino Musolino","doi":"10.3233/jae-230207","DOIUrl":"https://doi.org/10.3233/jae-230207","url":null,"abstract":"In this article, a magnetic shield for automotive Wireless Power Transfer (WPT) systems is proposed. Its innovative feature consists in the positioning of the shield, that is part of the Ground Assembly (GA) of the WPT system. Passive coils, assembled in an array-like structure to build the shieldsproperly located near the transmitting coils are investigated. Currently, there are a variety of shielding methods, each of them with its peculiar feature. The proposed method is simple and does not increase the transmitting and the receiving coil sizes, a constraint that is often critical from a practical and an economical point of view. The main characteristic of the proposed shielding method is the location of the shielding coils on the same level as the GA. The results here presented are validated by Finite Element (FE) based simulations and are referred to an experimental prototype of wireless charging systems for electric vehicles operating at 85 kHz with a transmitted nominal power of 3.3 kW. The results show that the proposed shield reduces the leakage magnetic flux density in the system up to 37% with a marginal impact on the transmission efficiency, complying the SAE J2954 international standard.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"25 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An optimization-aided approach to parametrize scalable models of induction machines in speed variable drives","authors":"Florian Pauli, Martin Hafner, Kay Hameyer","doi":"10.3233/jae-230216","DOIUrl":"https://doi.org/10.3233/jae-230216","url":null,"abstract":"The accurate and time-saving prediction of essential machine variables (output power, torque, and efficiency) is crucial for manufacturers offering a wide power range of induction machines. Many motor variants are typically produced by axially scaling and rewinding the machine. Rescaling proceduresof electromagnetic models of induction machines are in everyday use and well known. However, while a high accuracy can be achieved by rescaling in theory, more significant deviations between simulated and measured output parameters of the realized scaled device occur in praxis. These deviations can mainly be attributed to the faulty separation of effects in the distinct machine components, such as the rotor, stator, and bearings. This paper introduces an optimization-aided modeling approach based on the induction machine’s simple equivalent circuit representation. The method is validated by measurement data obtained from many induction machines with various axial lengths and winding configurations.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"25 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Additional eddy current losses in transformer working at static VAr compensation station","authors":"Pawel Witczak, Piotr Osinski","doi":"10.3233/jae-230202","DOIUrl":"https://doi.org/10.3233/jae-230202","url":null,"abstract":"The article discusses the impact of reactive power load on additional power losses in a high-power transformer operating at a VAr static compensation station. The presence of an almost pure capacitive load on the secondary side together with the thyristor switches is the cause of high-frequency components in the phase currents. The additional effect of electrical resonance between the transformer inductance and the load capacitance is also taken into account. The analysis is achieved using a three-dimensional finite element approach.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"5 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of pole pair number impact on single-sided linear induction machine performances","authors":"Aissa Bensehila, Athmane Bouzidi, Noureddine Takorabet, Baptiste Ristagno","doi":"10.3233/jae-230244","DOIUrl":"https://doi.org/10.3233/jae-230244","url":null,"abstract":"This paper presents a parametric study of linear induction motor for design purpose. The chosen mathematical model uses a 2D formulation with magnetic vector potential A. The implementation of the model is carried out with the finite element method on the free platform Gmsh-GetDP. Circuit model iscoupled to FE model so that constant voltage supply mode can be considered. This work aims to highlight the effect of the pole pair number on the characteristics and the performances of the linear induction machine through two numerical models associated to an analytical one. Furthermore, the study shows the effect of the pole pair number on the phase imbalance and the spatial harmonic spectrum of the machine. Reducing this imbalance and higher order harmonics presence will increase machine performances.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"13 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiple-degree-of-freedom damping characteristics evaluation of dual halbach array eddy current damper for turbopump in cryogenic environment","authors":"Akira Heya, Tsuyoshi Inoue","doi":"10.3233/jae-230258","DOIUrl":"https://doi.org/10.3233/jae-230258","url":null,"abstract":"Liquid hydrogen turbopumps are used in large high-performance rockets. Stable high-speed rotation is required for rocket turbopumps. The damping mechanism of the pump must suppress vibration not only in the radial direction but also in the axial direction. However, conventional damping elements using oil or rubber cannot be used due to the cryogenic temperature of liquid hydrogen. Therefore, the application of eddy current dampers to liquid hydrogen turbopumps is focused on in this paper. Although various structures of eddy current dampers have been developed, the multi-degree-of-freedom damping characteristics of dual Halbach array type eddy current dampers for liquid hydrogen turbopumps have not yet been investigated. The variation of damping characteristics with temperature has also not yet been verified. In this paper, we propose a novel dual Halbach array type eddy current damper for liquid hydrogen turbopumps. The proposed damper can generate high damping force and can be operated maintenance-free at the cryogenic temperature. The analysis results show that the damping characteristics strongly depend on temperature and that the amplitude reduction effect is greater at low temperatures. It was also found that the proposed damper has a higher damping force density than conventional dampers.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"32 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calculation of mutual inductance between arbitrarily positioned planar spiral coils for wireless power applications","authors":"Iftikhar Hussain, Dong-Kyun Woo","doi":"10.3233/jae-230060","DOIUrl":"https://doi.org/10.3233/jae-230060","url":null,"abstract":"Mutual inductance is one of the main parameters required to determine the power link’s performance (output voltage, efficiency) in wireless power transfer. The coils are often misaligned angularly in these applications, which affects the mutual inductance and thus the performance. Hence, an accurate calculation of mutual inductance is necessary to decide the working region of the coil. This paper presents an analytical calculation of mutual inductance between two planar spiral coils under angular misalignment conditions. By solving the Neumann integral formula, mutual inductance is derived for constant current-carrying coils, and the final mutual inductance value is calculated numerically. The influence of angular misalignment of the coil, which can be due to nutation and spin angles, on mutual inductance is studied in detail. The mutual inductance of the spiral coil is calculated for different misalignment cases. The accuracy of the calculation results is verified by comparing it with conventional formulas (mainly the Liu, the Babic formula, and the Poletkin formula) and by simulation using the finite element method. The proposed method is a more generalized and simpler one that can be used to calculate the mutual inductance of any size of coils, either spiral or circular, with any lateral and angular misalignments. Finally, a couple of spiral coils are fabricated to validate it experimentally. The comparison of the simulation and experiment results with the calculation result shows its accuracy. Thus, the proposed method can be applied to compute mutual inductance in any angularly misaligned coupling coils for the optimization of the wireless power transfer and their design.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"25 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}