Resonant coil matrix shielding for dynamic WPT systems

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Junda Zhu, Sami Barmada, Massimo Ceraolo, Nunzia Fontana, Antonino Musolino
{"title":"Resonant coil matrix shielding for dynamic WPT systems","authors":"Junda Zhu, Sami Barmada, Massimo Ceraolo, Nunzia Fontana, Antonino Musolino","doi":"10.3233/jae-230207","DOIUrl":null,"url":null,"abstract":"In this article, a magnetic shield for automotive Wireless Power Transfer (WPT) systems is proposed. Its innovative feature consists in the positioning of the shield, that is part of the Ground Assembly (GA) of the WPT system. Passive coils, assembled in an array-like structure to build the shieldsproperly located near the transmitting coils are investigated. Currently, there are a variety of shielding methods, each of them with its peculiar feature. The proposed method is simple and does not increase the transmitting and the receiving coil sizes, a constraint that is often critical from a practical and an economical point of view. The main characteristic of the proposed shielding method is the location of the shielding coils on the same level as the GA. The results here presented are validated by Finite Element (FE) based simulations and are referred to an experimental prototype of wireless charging systems for electric vehicles operating at 85 kHz with a transmitted nominal power of 3.3 kW. The results show that the proposed shield reduces the leakage magnetic flux density in the system up to 37% with a marginal impact on the transmission efficiency, complying the SAE J2954 international standard.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230207","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a magnetic shield for automotive Wireless Power Transfer (WPT) systems is proposed. Its innovative feature consists in the positioning of the shield, that is part of the Ground Assembly (GA) of the WPT system. Passive coils, assembled in an array-like structure to build the shieldsproperly located near the transmitting coils are investigated. Currently, there are a variety of shielding methods, each of them with its peculiar feature. The proposed method is simple and does not increase the transmitting and the receiving coil sizes, a constraint that is often critical from a practical and an economical point of view. The main characteristic of the proposed shielding method is the location of the shielding coils on the same level as the GA. The results here presented are validated by Finite Element (FE) based simulations and are referred to an experimental prototype of wireless charging systems for electric vehicles operating at 85 kHz with a transmitted nominal power of 3.3 kW. The results show that the proposed shield reduces the leakage magnetic flux density in the system up to 37% with a marginal impact on the transmission efficiency, complying the SAE J2954 international standard.
用于动态 WPT 系统的谐振线圈矩阵屏蔽
本文提出了一种用于汽车无线电力传输(WPT)系统的磁屏蔽。其创新之处在于屏蔽罩的定位,它是 WPT 系统地面组件(GA)的一部分。研究了以阵列式结构组装的无源线圈,以在发射线圈附近建立适当的屏蔽。目前,屏蔽方法多种多样,各有特点。所提出的方法简单,不会增加发射和接收线圈的尺寸,而从实用和经济的角度来看,这种限制往往是至关重要的。所提屏蔽方法的主要特点是屏蔽线圈与 GA 位于同一水平面上。本文介绍的结果通过基于有限元(FE)的模拟进行了验证,并参考了电动汽车无线充电系统的实验原型,该系统工作频率为 85 kHz,传输标称功率为 3.3 kW。结果表明,建议的屏蔽可将系统中的漏磁通密度降低 37%,对传输效率的影响微乎其微,符合 SAE J2954 国际标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信