Liyin Lian, He Sun, Wanjing Li, Jing Wang, Yifan Sheng, Xinyue Gong, Qian Sun, Pu Wang, Yadong Zheng, Houhui Song
{"title":"Identification of the interaction between MAPK1 and <italic>Eimeria acervulina</italic>serine protease inhibitor: a preliminary functional study","authors":"Liyin Lian, He Sun, Wanjing Li, Jing Wang, Yifan Sheng, Xinyue Gong, Qian Sun, Pu Wang, Yadong Zheng, Houhui Song","doi":"10.3724/abbs.2024095","DOIUrl":"https://doi.org/10.3724/abbs.2024095","url":null,"abstract":"","PeriodicalId":503337,"journal":{"name":"Acta Biochimica et Biophysica Sinica","volume":"150 S297","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141413847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnolol promotes the autophagy of esophageal carcinoma cells by upregulating HACE1 gene expression.","authors":"Kenan Huang, Biao Zhang, Yu Feng, Haitao Ma","doi":"10.3724/abbs.2024044","DOIUrl":"https://doi.org/10.3724/abbs.2024044","url":null,"abstract":"Esophagus cancer (EC) is one of the most aggressive malignant digestive system tumors and has a high clinical incidence worldwide. Magnolol, a natural compound, has anticancer effects on many cancers, including esophageal carcinoma, but the underlying mechanism has not been fully elucidated. Here, we first find that magnolol inhibits the proliferation of esophageal carcinoma cells and enhances their autophagy activity in a dose- and time-dependent manner. This study demonstrates that magnolol increases the protein levels of LC3 II, accompanied by increased HACE1 protein levels in both esophageal carcinoma cells and xenograft tumors. HACE1-knockout (KO) cell lines are generated, and the ablation of HACE1 eliminates the anti-proliferative and autophagy-inducing effects of magnolol on esophageal carcinoma cells. Additionally, our results show that magnolol primarily promotes HACE1 expression at the transcriptional level. Therefore, this study shows that magnolol primarily exerts its antitumor effect by activating HACE1-OPTN axis-mediated autophagy. It can be considered a promising therapeutic drug for esophageal carcinoma.","PeriodicalId":503337,"journal":{"name":"Acta Biochimica et Biophysica Sinica","volume":"38 50","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular stratification of the human fetal vaginal epithelium by spatial transcriptome analysis.","authors":"Ziying Ye, Peipei Jiang, Qi Zhu, Zhongrui Pei, Yali Hu, Guangfeng Zhao","doi":"10.3724/abbs.2024063","DOIUrl":"https://doi.org/10.3724/abbs.2024063","url":null,"abstract":"The human vaginal epithelium is a crucial component of numerous reproductive processes and serves as a vital protective barrier against pathogenic invasion. Despite its significance, a comprehensive exploration of its molecular profiles, including molecular expression and distribution across its multiple layers, has not been performed. In this study, we perform a spatial transcriptomic analysis within the vaginal wall of human fetuses to fill this knowledge gap. We successfully categorize the vaginal epithelium into four distinct zones based on transcriptomic profiles and anatomical features. This approach reveals unique transcriptomic signatures within these regions, allowing us to identify differentially expressed genes and uncover novel markers for distinct regions of the vaginal epithelium. Additionally, our findings highlight the varied expressions of keratin ( KRT) genes across different zones of the vaginal epithelium, with a gradual shift in expression patterns observed from the basal layer to the surface/superficial layer. This suggests a potential differentiation trajectory of the human vaginal epithelium, shedding light on the dynamic nature of this tissue. Furthermore, abundant biological processes are found to be enriched in the basal zone by KEGG pathway analysis, indicating an active state of the basal zone cells. Subsequently, the expressions of latent stem cell markers in the basal zone are identified. In summary, our research provides a crucial understanding of human vaginal epithelial cells and the complex mechanisms of the vaginal mucosa, with potential applications in vaginal reconstruction and drug delivery, making this atlas a valuable tool for future research in women's health and reproductive medicine.","PeriodicalId":503337,"journal":{"name":"Acta Biochimica et Biophysica Sinica","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140658462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AlphaFold2 assists in providing novel mechanistic insights into the interactions among the LUBAC subunits.","authors":"Chenchen Wang, Chunying Gu, Ying Lv, Hongyu Liu, Yanan Wang, Yongmei Zuo, Guangyu Jiang, Lili Liu, Jiafu Liu","doi":"10.3724/abbs.2024047","DOIUrl":"https://doi.org/10.3724/abbs.2024047","url":null,"abstract":"The linear ubiquitin chain assembly complex (LUBAC) is the only known E3 ligase complex in which the ubiquitin-like (UBL) domains of SHARPIN and HOIL-1L interact with HOIP to determine the structural stability of LUBAC. The interactions between subunits within LUBAC have been a topic of extensive research. However, the impact of the LTM motif on the interaction between the UBL domains of SHARPIN and HOIL-1L with HOIP remains unclear. Here, we discover that the absence of the LTM motif in the AlphaFold2-predicted LUBAC structure alters the HOIP-UBA structure. We employ GeoPPI to calculate the changes in binding free energy (ΔG) caused by single-point mutations between subunits, simulating their protein-protein interactions. The results reveal that the presence of the LTM motif decreases the interaction between the UBL domains of SHARPIN and HOIL-1L with HOIP, leading to a decrease in the structural stability of LUBAC. Furthermore, using the AlphaFold2-predicted results, we find that HOIP (629‒695) and HOIP-UBA bind to both sides of HOIL-1L-UBL, respectively. The experiments of Gromacs molecular dynamics simulations, SPR and ITC demonstrate that the elongated domain formed by HOIP (629‒695) and HOIP-UBA, hereafter referred to as the HOIP (466‒695) structure, interacts with HOIL-1L-UBL to form a structurally stable complex. These findings illustrate the collaborative interaction between HOIP-UBA and HOIP (629‒695) with HOIL-1L-UBL, which influences the structural stability of LUBAC.","PeriodicalId":503337,"journal":{"name":"Acta Biochimica et Biophysica Sinica","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140663752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DPP3 promotes breast cancer tumorigenesis by stabilizing FASN and promoting lipid synthesis.","authors":"Xiaoyu Fu, Xu Li, Weixing Wang, Juanjuan Li","doi":"10.3724/abbs.2024054","DOIUrl":"https://doi.org/10.3724/abbs.2024054","url":null,"abstract":"DPP3, a dipeptidyl peptidase, participates in a variety of pathophysiological processes. DPP3 is upregulated in cancer and might serve as a key factor in the tumorigenesis and progression of various malignancies. However, its specific role and molecular mechanism are still unknown. In this study, the expression of DPP3 in breast cancer tissues is analyzed using TCGA database. Kaplan-Meier survival analysis is performed to estimate the effect of DPP3 on the survival outcomes. To explore the biological function and mechanisms of DPP3 in breast cancer, biochemical and cell biology assays are conducted in vitro. DPP3 expresses at a higher level in breast cancer tissues than that in adjacent tissues in both TCGA database and clinical samples. Patients with high expression of DPP3 have poor survival outcomes. The proliferation and migration abilities of tumor cells with stable DPP3 knockout in breast cancer cell lines are significantly inhibited, and apoptosis is increased in vitro. GSEA analysis shows that DPP3 can affect lipid metabolism and fatty acid synthesis in tumors. Subsequent experiments show that DPP3 could stabilize FASN expression and thus promote fatty acid synthesis in tumor cells. The results of the metabolomic analysis also confirm that DPP3 can affect the content of free fatty acids. This study demonstrates that DPP3 plays a role in the reprogramming of fatty acid metabolism in tumors and is associated with poor prognosis in breast cancer patients. These findings will provide a new therapeutic target for the treatment of breast cancer.","PeriodicalId":503337,"journal":{"name":"Acta Biochimica et Biophysica Sinica","volume":"118 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140659296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Disruption of a DNA G-quadruplex causes a gain-of-function SCL45A1 variant relevant to developmental disorders.","authors":"Yuxi Chen, Jiang Long, Sixian Wu, Yazhen Wei, Fei Yan, Qing Li, Jierui Yan, Nannan Zhang, Wenming Xu","doi":"10.3724/abbs.2024053","DOIUrl":"https://doi.org/10.3724/abbs.2024053","url":null,"abstract":"SLC45A1 encodes a glucose transporter protein highly expressed in the brain. Mutations in SLC45A1 may lead to neurological diseases and developmental disorders, but its exact role is poorly understood. DNA G-quadruplexes (DNA G4s) are stable structures formed by four guanine bases and play a role in gene regulation and genomic stability. Changes in DNA G4s may affect brain development and function. The mechanism linking alterations in DNA G-quadruplex structures to SLC45A1 pathogenicity remains unknown. In this study, we identify a functional DNA G-quadruplex and its key binding site on SLC45A1 (NM_001080397.3: exon 2: c.449 G>A: p.R150K). This variant results in the upregulation of mRNA and protein expression, which may lead to intellectual developmental disorder with neuropsychiatric features. Mechanistically, the mutation is found to disrupt DNA G-quadruplex structures on SLC45A1, leading to transcriptional enhancement and a gain-of-function mutation, which further causes increased expression and function of the SLC45A1 protein. The identification of the functional DNA G-quadruplex and its effects on DNA G4s may provide new insights into the genetic basis of SLC45A1 pathogenicity and highlight the importance of DNA G4s of SLC45A1 in regulating gene expression and brain development.","PeriodicalId":503337,"journal":{"name":"Acta Biochimica et Biophysica Sinica","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140663764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianhong Wu, L. Fan, Lin Li, Yudi Zhang, Yucui Tian, Ziwen Jiang, Zhaohui Liu, Dan Lu, Yinmei Dai
{"title":"Integrated analysis of endometrial stromal cell long noncoding RNA and mRNA expression profiles associated with TGF-β1-induced fibrosis.","authors":"Jianhong Wu, L. Fan, Lin Li, Yudi Zhang, Yucui Tian, Ziwen Jiang, Zhaohui Liu, Dan Lu, Yinmei Dai","doi":"10.3724/abbs.2024052","DOIUrl":"https://doi.org/10.3724/abbs.2024052","url":null,"abstract":"","PeriodicalId":503337,"journal":{"name":"Acta Biochimica et Biophysica Sinica","volume":" 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140684601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kun Zhou, Dexin Wang, Xiaolin Du, Xia Feng, Xiaoxi Zhu, Cheng Wang
{"title":"UBE2C enhances temozolomide resistance by regulating the expression of p53 to induce aerobic glycolysis in glioma.","authors":"Kun Zhou, Dexin Wang, Xiaolin Du, Xia Feng, Xiaoxi Zhu, Cheng Wang","doi":"10.3724/abbs.2024033","DOIUrl":"https://doi.org/10.3724/abbs.2024033","url":null,"abstract":"UBE2C is overexpressed in gliomas, and its overexpression has been reported to be correlated with the drug resistance of gliomas to some extent. In this study, we explore the role of UBE2C in regulating temozolomide (TMZ) resistance in glioma and investigate the underlying mechanisms involved. Twenty normal brain tissues and 100 glioma tissues from 50 TMZ-resistant patients and 50 TMZ-sensitive patients are included in this study. TMZ-resistant cell lines are constructed to explore the role of UBE2C in regulating glioma cell viability and TMZ resistance. Our results show that both the mRNA and protein levels of UBE2C are significantly elevated in the brain tissues of glioma patients, especially in those of TMZ-resistant patients. Consistently, UBE2C expression is markedly upregulated in TMZ-resistant cell lines. Overexpression of UBE2C rescues glioma cells from TMZ-mediated apoptosis and enhances cell viability. In contrast, downregulation of UBE2C expression further enhances TMZ function, increases cell apoptosis and decreases cell viability. Mechanistically, UBE2C overexpression decreases p53 expression and enhances aerobic glycolysis level by increasing ATP level, lactate production, and glucose uptake. Downregulation of p53 level abolishes the role of UBE2C downregulation in inhibiting TMZ resistance and aerobic glycolysis in glioma cells. Moreover, an animal assay confirms that downregulation of UBE2C expression further suppresses tumor growth in the context of TMZ treatment. Collectively, this study reveals that downregulation of UBE2C expression enhances the sensitivity of glioma cells to TMZ by regulating the expression of p53 to inhibit aerobic glycolysis.","PeriodicalId":503337,"journal":{"name":"Acta Biochimica et Biophysica Sinica","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140687315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lycium barbarum polysaccharide ameliorates the accumulation of lipid droplets in adipose tissue via an ATF6/SIRT1-dependent mechanism.","authors":"Rui Zhou, Yajing Liu, Weiqiang Hu, Jing Yang, Bing Lin, Zhentian Zhang, Mingyan Chen, Jingwen Yi, Cuifeng Zhu","doi":"10.3724/abbs.2024046","DOIUrl":"https://doi.org/10.3724/abbs.2024046","url":null,"abstract":"Lipid droplets (LDs) are dynamic organelles that store neutral lipids and are closely linked to obesity. Previous studies have suggested that Lycium barbarum polysaccharide (LBP) supplements can ameliorate obesity, but the underlying mechanisms remain unclear. In this study, we hypothesize that LBP alleviates LD accumulation in adipose tissue (AT) by inhibiting fat-specific protein 27 (Fsp27) through an activating transcription factor-6 (ATF6)/small-molecule sirtuin 1 (SIRT1)-dependent mechanism. LD accumulation in AT is induced in high-fat diet (HFD)-fed mice, and differentiation of 3T3-L1 preadipocytes (PAs) is induced. The ability of LBP to alleviate LD accumulation and the possible underlying mechanism are then investigated both in vivo and in vitro. The influences of LBP on the expressions of LD-associated genes ( ATF6 and Fsp27) are also detected. The results show that HFD and PA differentiation markedly increase LD accumulation in ATs and adipocytes, respectively, and these effects are markedly suppressed by LBP supplementation. Furthermore, LBP significantly activates SIRT1 and decreases ATF6 and Fsp27 expressions. Interestingly, the inhibitory effects of LBP are either abolished or exacerbated when ATF6 is overexpressed or silenced, respectively. Furthermore, SIRT1 level is transcriptionally regulated by LBP through opposite actions mediated by ATF6. Collectively, our findings suggest that LBP supplementation alleviates obesity by ameliorating LD accumulation, which might be partially mediated by an ATF6/SIRT1-dependent mechanism.","PeriodicalId":503337,"journal":{"name":"Acta Biochimica et Biophysica Sinica","volume":"79 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140710984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}