International Journal of Food Engineering最新文献

筛选
英文 中文
Substrate-fertilizer-integrated agarose-based hydrogel as a growth substrate for selenium-enriched cultivation of mature pakchoi (Brassica chinensis L.) 基质-肥料-琼脂糖基水凝胶作为富硒栽培成熟白花菜的生长基质
International Journal of Food Engineering Pub Date : 2024-05-22 DOI: 10.1515/ijfe-2024-0001
Yun Wang, Jian Zhu, Na Li
{"title":"Substrate-fertilizer-integrated agarose-based hydrogel as a growth substrate for selenium-enriched cultivation of mature pakchoi (Brassica chinensis L.)","authors":"Yun Wang, Jian Zhu, Na Li","doi":"10.1515/ijfe-2024-0001","DOIUrl":"https://doi.org/10.1515/ijfe-2024-0001","url":null,"abstract":"\u0000 Different agarose-based (agar-based) hydrogels for Se-enriched cultures of mature vegetables were successfully synthesized, and their structure and morphology were characterized using FT-IR, XRD, TGA, and SEM. The growth indices and Se content of pakchoi plants grown on different agar-based hydrogels were measured. The results showed that the Agar-NS-SeCA-AC hydrogel system can support plant growth for prolonged periods under Se-enriched cultivation. The introduction of the three additives accounted for a 191.09 % increase in the pakchoi yield compared with that of the pristine Agar hydrogel but improved the Se content of the pakchoi by 10.77 %. Moreover, an orthogonal experimental design was used to analyze the influence of NS, SeCA, and AC on the growth and Se enrichment effect of pakchoi grown on agar-based hydrogels. Our findings provide a novel substrate for plant Se-enriched cultivation and could lead to the development of new strategies for indoor Se-enriched farming and space Se-enriched farming.","PeriodicalId":502707,"journal":{"name":"International Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141108500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combined effects of low pressure superheated steam drying and vacuum drying on sugar reduction and quality attribute in mango (Mangifera indica L.) slices 低压过热蒸汽干燥和真空干燥对芒果(Mangifera indica L.)切片降糖和品质属性的联合影响
International Journal of Food Engineering Pub Date : 2024-05-21 DOI: 10.1515/ijfe-2023-0249
Jianbo Liu, Xin Xu, Tianjian Zhang, Jingcheng Wang, Ruifang Wang, Qing Xu
{"title":"Combined effects of low pressure superheated steam drying and vacuum drying on sugar reduction and quality attribute in mango (Mangifera indica L.) slices","authors":"Jianbo Liu, Xin Xu, Tianjian Zhang, Jingcheng Wang, Ruifang Wang, Qing Xu","doi":"10.1515/ijfe-2023-0249","DOIUrl":"https://doi.org/10.1515/ijfe-2023-0249","url":null,"abstract":"\u0000 Consumers paying more attention to physical health has led to an increasing market demand for low-sugar dried fruit products. The quality of products dried via low pressure superheated steam drying (LPSSD) is not only superior to those dried via conventional hot air or vacuum drying (VD), but also has the potential to reduce sugar content. In order to elucidate the mechanism of reducing the sugar of mango slices by LPSSD and obtain low-sugar dried mango slices, the combined effect of LPSSD–VD on mango slices was studied and an evaporation experiment of a sugar solution in a low pressure superheated steam environment was performed. This study revealed that the sugar reduction of mango slices was mainly due to the superheated steam carryover phenomenon in the second half of the constant-temperature stage and the occurrence of Maillard reaction during LPSSD. The quality attributes of mango slices dried using LPSSD–VD was improved compared with LPSSD and VD. As a result, LPSSD–VD could be used to regulate the sugar content in dried fruit and provide a theoretical basis for the production of low-sugar preserved fruits.","PeriodicalId":502707,"journal":{"name":"International Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141117925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capability of walnut (juglans regia L.) shells as a natural biosorbent of aflatoxin B1 in a batch experiment model 批量实验模型中核桃(juglans regia L.)壳作为黄曲霉毒素 B1 天然生物吸附剂的能力
International Journal of Food Engineering Pub Date : 2024-02-19 DOI: 10.1515/ijfe-2023-0273
Syed Tariq Ali, Muhammad Asif Asghar, Farman Ahmed, Dua Saleem, Amna Farzeen Baig, Najma Saeed Ullah
{"title":"Capability of walnut (juglans regia L.) shells as a natural biosorbent of aflatoxin B1 in a batch experiment model","authors":"Syed Tariq Ali, Muhammad Asif Asghar, Farman Ahmed, Dua Saleem, Amna Farzeen Baig, Najma Saeed Ullah","doi":"10.1515/ijfe-2023-0273","DOIUrl":"https://doi.org/10.1515/ijfe-2023-0273","url":null,"abstract":"\u0000 In the present study, the efficacy of low-cost biosorbent obtained from walnut shells for the removal of AFB1 was examined. The characterization of the biosorbent was investigated using SEM, EDS, FTIR, XRD, and pHpzc. Maximum removal (90.5 %) was achieved using 100 mg/mL of biosorbent, pH 7.0 at 45 °C for 45 min with 100 ng/mL of AFB1. The biosorbent’s adsorption capacity was found to be 178.9 mg/g as calculated using the Langmuir isotherm and assumption of monolayer AFB1 adsorption with homogenously dispersed adsorption positions on the biosorbent exterior. The kinetic data indicated the fast AFB1 uptake on biosorbent and followed the pseudo-second-order model. The thermodynamic factors revealed that the adsorption process is viable, spontaneous and endothermic. Furthermore, slight decrease in AFB1 adsorption was observed after repeating the adsorption–desorption process for 5 times. In conclusion, the obtained biosorbent is an economically, eco-friendly and promising material for the removal of AFB1.","PeriodicalId":502707,"journal":{"name":"International Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139959120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of phytic acid in protein via pretreatment of rapeseed meal 通过预处理菜籽粕去除蛋白质中的植酸
International Journal of Food Engineering Pub Date : 2024-02-09 DOI: 10.1515/ijfe-2023-0276
Yanlei Li, Yiying Sun, Lin Lu, Zhiming Gao, Yuehan Wu, Dan Yuan, Wenxin Jiang
{"title":"Removal of phytic acid in protein via pretreatment of rapeseed meal","authors":"Yanlei Li, Yiying Sun, Lin Lu, Zhiming Gao, Yuehan Wu, Dan Yuan, Wenxin Jiang","doi":"10.1515/ijfe-2023-0276","DOIUrl":"https://doi.org/10.1515/ijfe-2023-0276","url":null,"abstract":"\u0000 To obtain rapeseed protein with low phytic acid (PA), soy protein isolate (SPI) was used to investigate the interactions between SPI and PA. The influence of pretreatment (soaking using salt solution and dialysis) of the defatted rapeseed meal on the PA and protein content in the final rapeseed proteins was also studied. The results showed that electrostatic interactions dominated the protein–PA interaction, which was affected by pH and ionic strength. Accordingly, the pH and ionic strength in the soaking medium also influenced the PA remained in the rapeseed proteins. The PA content decreased with the ionic strength (400–800 mM) and relatively low PA was obtained at pH 6.0 (soaking environment). Finally, 52.8 % of the PA have been removed and PA content remained in rapeseed protein isolate (RPI) reached about 0.84 mg/g, at the same time, the protein content was maintained around 86.70 %. Overall, soaking using salt solution and dialysis could be an effective method to achieve high quality rapeseed protein with low PA.","PeriodicalId":502707,"journal":{"name":"International Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139787845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of phytic acid in protein via pretreatment of rapeseed meal 通过预处理菜籽粕去除蛋白质中的植酸
International Journal of Food Engineering Pub Date : 2024-02-09 DOI: 10.1515/ijfe-2023-0276
Yanlei Li, Yiying Sun, Lin Lu, Zhiming Gao, Yuehan Wu, Dan Yuan, Wenxin Jiang
{"title":"Removal of phytic acid in protein via pretreatment of rapeseed meal","authors":"Yanlei Li, Yiying Sun, Lin Lu, Zhiming Gao, Yuehan Wu, Dan Yuan, Wenxin Jiang","doi":"10.1515/ijfe-2023-0276","DOIUrl":"https://doi.org/10.1515/ijfe-2023-0276","url":null,"abstract":"\u0000 To obtain rapeseed protein with low phytic acid (PA), soy protein isolate (SPI) was used to investigate the interactions between SPI and PA. The influence of pretreatment (soaking using salt solution and dialysis) of the defatted rapeseed meal on the PA and protein content in the final rapeseed proteins was also studied. The results showed that electrostatic interactions dominated the protein–PA interaction, which was affected by pH and ionic strength. Accordingly, the pH and ionic strength in the soaking medium also influenced the PA remained in the rapeseed proteins. The PA content decreased with the ionic strength (400–800 mM) and relatively low PA was obtained at pH 6.0 (soaking environment). Finally, 52.8 % of the PA have been removed and PA content remained in rapeseed protein isolate (RPI) reached about 0.84 mg/g, at the same time, the protein content was maintained around 86.70 %. Overall, soaking using salt solution and dialysis could be an effective method to achieve high quality rapeseed protein with low PA.","PeriodicalId":502707,"journal":{"name":"International Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139847740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The rheological, textural, frictional, and digestive properties of starch-based cheese analogs prepared with tapioca starch and almond protein 用木薯淀粉和杏仁蛋白制备的淀粉基奶酪类似物的流变、质地、摩擦和消化特性
International Journal of Food Engineering Pub Date : 2024-02-05 DOI: 10.1515/ijfe-2023-0253
Peijiao Li, Yanwen Wen, Xiaomin Qiu, Douyi Chen, Yuan Zou, Qianwang Zheng
{"title":"The rheological, textural, frictional, and digestive properties of starch-based cheese analogs prepared with tapioca starch and almond protein","authors":"Peijiao Li, Yanwen Wen, Xiaomin Qiu, Douyi Chen, Yuan Zou, Qianwang Zheng","doi":"10.1515/ijfe-2023-0253","DOIUrl":"https://doi.org/10.1515/ijfe-2023-0253","url":null,"abstract":"\u0000 Most commercial starch-based cheese analogs were pointed out that protein content is low, but protein can affect the formation of the starch gel and its sensory properties. Almond proteins have high nutritional values because they are abundant in essential amino acids. In this study, the effects of different tapioca starch/almond protein proportions on the starch-based cheese analogs texture, rheology, friction and digestion properties were studied. The addition of almond protein to starch-based cheese analogs resulted in soft texture, small storage modulus values, increased friction coefficients, and increased fat digestibility as the proportion of protein increased. When increase the starch proportion, an opposite trend was observed. These findings showed that protein-supplemented starch-based cheese analogs with tunable texture, rheological, frictional and digestive properties can be easily produced by controlling the proportion of tapioca starch/almond protein.","PeriodicalId":502707,"journal":{"name":"International Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139864606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The rheological, textural, frictional, and digestive properties of starch-based cheese analogs prepared with tapioca starch and almond protein 用木薯淀粉和杏仁蛋白制备的淀粉基奶酪类似物的流变、质地、摩擦和消化特性
International Journal of Food Engineering Pub Date : 2024-02-05 DOI: 10.1515/ijfe-2023-0253
Peijiao Li, Yanwen Wen, Xiaomin Qiu, Douyi Chen, Yuan Zou, Qianwang Zheng
{"title":"The rheological, textural, frictional, and digestive properties of starch-based cheese analogs prepared with tapioca starch and almond protein","authors":"Peijiao Li, Yanwen Wen, Xiaomin Qiu, Douyi Chen, Yuan Zou, Qianwang Zheng","doi":"10.1515/ijfe-2023-0253","DOIUrl":"https://doi.org/10.1515/ijfe-2023-0253","url":null,"abstract":"\u0000 Most commercial starch-based cheese analogs were pointed out that protein content is low, but protein can affect the formation of the starch gel and its sensory properties. Almond proteins have high nutritional values because they are abundant in essential amino acids. In this study, the effects of different tapioca starch/almond protein proportions on the starch-based cheese analogs texture, rheology, friction and digestion properties were studied. The addition of almond protein to starch-based cheese analogs resulted in soft texture, small storage modulus values, increased friction coefficients, and increased fat digestibility as the proportion of protein increased. When increase the starch proportion, an opposite trend was observed. These findings showed that protein-supplemented starch-based cheese analogs with tunable texture, rheological, frictional and digestive properties can be easily produced by controlling the proportion of tapioca starch/almond protein.","PeriodicalId":502707,"journal":{"name":"International Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139805074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信