Syed Tariq Ali, Muhammad Asif Asghar, Farman Ahmed, Dua Saleem, Amna Farzeen Baig, Najma Saeed Ullah
{"title":"批量实验模型中核桃(juglans regia L.)壳作为黄曲霉毒素 B1 天然生物吸附剂的能力","authors":"Syed Tariq Ali, Muhammad Asif Asghar, Farman Ahmed, Dua Saleem, Amna Farzeen Baig, Najma Saeed Ullah","doi":"10.1515/ijfe-2023-0273","DOIUrl":null,"url":null,"abstract":"\n In the present study, the efficacy of low-cost biosorbent obtained from walnut shells for the removal of AFB1 was examined. The characterization of the biosorbent was investigated using SEM, EDS, FTIR, XRD, and pHpzc. Maximum removal (90.5 %) was achieved using 100 mg/mL of biosorbent, pH 7.0 at 45 °C for 45 min with 100 ng/mL of AFB1. The biosorbent’s adsorption capacity was found to be 178.9 mg/g as calculated using the Langmuir isotherm and assumption of monolayer AFB1 adsorption with homogenously dispersed adsorption positions on the biosorbent exterior. The kinetic data indicated the fast AFB1 uptake on biosorbent and followed the pseudo-second-order model. The thermodynamic factors revealed that the adsorption process is viable, spontaneous and endothermic. Furthermore, slight decrease in AFB1 adsorption was observed after repeating the adsorption–desorption process for 5 times. In conclusion, the obtained biosorbent is an economically, eco-friendly and promising material for the removal of AFB1.","PeriodicalId":502707,"journal":{"name":"International Journal of Food Engineering","volume":"6 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capability of walnut (juglans regia L.) shells as a natural biosorbent of aflatoxin B1 in a batch experiment model\",\"authors\":\"Syed Tariq Ali, Muhammad Asif Asghar, Farman Ahmed, Dua Saleem, Amna Farzeen Baig, Najma Saeed Ullah\",\"doi\":\"10.1515/ijfe-2023-0273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the present study, the efficacy of low-cost biosorbent obtained from walnut shells for the removal of AFB1 was examined. The characterization of the biosorbent was investigated using SEM, EDS, FTIR, XRD, and pHpzc. Maximum removal (90.5 %) was achieved using 100 mg/mL of biosorbent, pH 7.0 at 45 °C for 45 min with 100 ng/mL of AFB1. The biosorbent’s adsorption capacity was found to be 178.9 mg/g as calculated using the Langmuir isotherm and assumption of monolayer AFB1 adsorption with homogenously dispersed adsorption positions on the biosorbent exterior. The kinetic data indicated the fast AFB1 uptake on biosorbent and followed the pseudo-second-order model. The thermodynamic factors revealed that the adsorption process is viable, spontaneous and endothermic. Furthermore, slight decrease in AFB1 adsorption was observed after repeating the adsorption–desorption process for 5 times. In conclusion, the obtained biosorbent is an economically, eco-friendly and promising material for the removal of AFB1.\",\"PeriodicalId\":502707,\"journal\":{\"name\":\"International Journal of Food Engineering\",\"volume\":\"6 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Food Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ijfe-2023-0273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ijfe-2023-0273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Capability of walnut (juglans regia L.) shells as a natural biosorbent of aflatoxin B1 in a batch experiment model
In the present study, the efficacy of low-cost biosorbent obtained from walnut shells for the removal of AFB1 was examined. The characterization of the biosorbent was investigated using SEM, EDS, FTIR, XRD, and pHpzc. Maximum removal (90.5 %) was achieved using 100 mg/mL of biosorbent, pH 7.0 at 45 °C for 45 min with 100 ng/mL of AFB1. The biosorbent’s adsorption capacity was found to be 178.9 mg/g as calculated using the Langmuir isotherm and assumption of monolayer AFB1 adsorption with homogenously dispersed adsorption positions on the biosorbent exterior. The kinetic data indicated the fast AFB1 uptake on biosorbent and followed the pseudo-second-order model. The thermodynamic factors revealed that the adsorption process is viable, spontaneous and endothermic. Furthermore, slight decrease in AFB1 adsorption was observed after repeating the adsorption–desorption process for 5 times. In conclusion, the obtained biosorbent is an economically, eco-friendly and promising material for the removal of AFB1.