Engineering Reports最新文献

筛选
英文 中文
Mapping damages from inspection images to 3D digital twins of large‐scale structures 从检测图像到大型结构三维数字孪生的损坏映射
Engineering Reports Pub Date : 2024-01-01 DOI: 10.1002/eng2.12837
Hans‐Henrik von Benzon, Xiao Chen
{"title":"Mapping damages from inspection images to 3D digital twins of large‐scale structures","authors":"Hans‐Henrik von Benzon, Xiao Chen","doi":"10.1002/eng2.12837","DOIUrl":"https://doi.org/10.1002/eng2.12837","url":null,"abstract":"This study develops a methodology to create detailed visual Digital Twins of large‐scale structures with their realistic damages detected from visual inspection or nondestructive testing. The methodology is demonstrated with a transition piece of an offshore wind turbine and a composite rotor blade, with surface paint damage and subsurface delamination damage, respectively. Artificial Intelligence and color threshold segmentation are used to classify and localize damages from optical images taken by drones. These damages are digitalized and mapped to a 3D geometry reconstruction of the large‐scale structure or a CAD model of the structure. To map the images from 2D to 3D, metadata information is combined with the geo placement of the large‐scale structure's 3D model. The 3D model can here both be a CAD model of the structure or a 3D reconstruction based on photogrammetry. After mapping the damage, the Digital Twin gives an accurate representation of the structure. The location, shape, and size of the damage are visible on the Digital Twin. The demonstrated methodology can be applied to industrial sectors such as wind energy, the oil and gas industry, marine and aerospace to facilitate asset management.","PeriodicalId":502604,"journal":{"name":"Engineering Reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139125485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redesigning elastic full‐waveform inversion on the new Sunway architecture 在新的 Sunway 架构上重新设计弹性全波形反演
Engineering Reports Pub Date : 2023-11-23 DOI: 10.1002/eng2.12819
Mengyuan Hua, Wubing Wan, Zhaoqi Sun, Zekun Yin, Puyu Xiong, Xiaohui Liu, Haodong Tian, Ping Gao, Weiguo Liu, Hua Wang, Wenlai Zhao, Zhenchun Huang
{"title":"Redesigning elastic full‐waveform inversion on the new Sunway architecture","authors":"Mengyuan Hua, Wubing Wan, Zhaoqi Sun, Zekun Yin, Puyu Xiong, Xiaohui Liu, Haodong Tian, Ping Gao, Weiguo Liu, Hua Wang, Wenlai Zhao, Zhenchun Huang","doi":"10.1002/eng2.12819","DOIUrl":"https://doi.org/10.1002/eng2.12819","url":null,"abstract":"IFOS3D is a three‐dimensional elastic full‐waveform inversion (EFWI) tool designed for high‐resolution estimation of the Earth's material properties within 3D subsurface structures. However, due to the significant computational costs associated with 3D EFWI, leveraging the computing power of a supercomputer for implementation is a logical choice. In this article, we introduce several innovative process‐level and thread‐level optimizations based on heterogeneous many‐core architectures in the new Sunway supercomputer, which is a powerful system globally. These optimizations encompass a process‐level communication overlapping strategy, thread‐level data partitioning and layout approaches, a remote memory access optimized master‐slave communication scheme, and a thread‐level data reuse and overlapping strategy. Through these optimizations, we achieve significant improvements in each iteration, with a kernel function speedup of approximately 59 and an overall program speedup of about 14. Our findings demonstrate the ability of our proposed optimization strategies to overcome the computational challenges associated with 3D EFWI, providing a promising framework for future advancements in the field of subsurface imaging.","PeriodicalId":502604,"journal":{"name":"Engineering Reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139246331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信