{"title":"Crack detection based on attention mechanism with YOLOv5","authors":"Min‐Li Lan, Dan Yang, Shuang‐Xi Zhou, Yang Ding","doi":"10.1002/eng2.12899","DOIUrl":"https://doi.org/10.1002/eng2.12899","url":null,"abstract":"In order to reduce the manual workload and reduce the maintenance cost, it is particularly important to realize automatic detection of cracks. Aiming at the problems of poor real‐time performance and low precision of traditional pavement crack detection, a crack detection method based on improved YOLOv5 one‐step target detection algorithm of convolutional neural network is proposed by using the advantages of depth learning network in target detection. The images were manually marked with LabelImg annotation software, and then the network model parameters were obtained through improving the YOLOv5 network training. Finally, the cracks are verified and detected by the established model. In addition, the precision and speed of crack detection using YOLOv3, YOLOv5s, and YOLOv5s‐attention models are compared by using Precision, Recall, and F1. After comparison, it is found that the detection precision of YOLOv5s‐attention is improved by 1.0%, F1 by 0.9%, and mAP@.5 by 1.8%.","PeriodicalId":502604,"journal":{"name":"Engineering Reports","volume":"45 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140663030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mapping damages from inspection images to 3D digital twins of large‐scale structures","authors":"Hans‐Henrik von Benzon, Xiao Chen","doi":"10.1002/eng2.12837","DOIUrl":"https://doi.org/10.1002/eng2.12837","url":null,"abstract":"This study develops a methodology to create detailed visual Digital Twins of large‐scale structures with their realistic damages detected from visual inspection or nondestructive testing. The methodology is demonstrated with a transition piece of an offshore wind turbine and a composite rotor blade, with surface paint damage and subsurface delamination damage, respectively. Artificial Intelligence and color threshold segmentation are used to classify and localize damages from optical images taken by drones. These damages are digitalized and mapped to a 3D geometry reconstruction of the large‐scale structure or a CAD model of the structure. To map the images from 2D to 3D, metadata information is combined with the geo placement of the large‐scale structure's 3D model. The 3D model can here both be a CAD model of the structure or a 3D reconstruction based on photogrammetry. After mapping the damage, the Digital Twin gives an accurate representation of the structure. The location, shape, and size of the damage are visible on the Digital Twin. The demonstrated methodology can be applied to industrial sectors such as wind energy, the oil and gas industry, marine and aerospace to facilitate asset management.","PeriodicalId":502604,"journal":{"name":"Engineering Reports","volume":"55 51","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139125485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Redesigning elastic full‐waveform inversion on the new Sunway architecture","authors":"Mengyuan Hua, Wubing Wan, Zhaoqi Sun, Zekun Yin, Puyu Xiong, Xiaohui Liu, Haodong Tian, Ping Gao, Weiguo Liu, Hua Wang, Wenlai Zhao, Zhenchun Huang","doi":"10.1002/eng2.12819","DOIUrl":"https://doi.org/10.1002/eng2.12819","url":null,"abstract":"IFOS3D is a three‐dimensional elastic full‐waveform inversion (EFWI) tool designed for high‐resolution estimation of the Earth's material properties within 3D subsurface structures. However, due to the significant computational costs associated with 3D EFWI, leveraging the computing power of a supercomputer for implementation is a logical choice. In this article, we introduce several innovative process‐level and thread‐level optimizations based on heterogeneous many‐core architectures in the new Sunway supercomputer, which is a powerful system globally. These optimizations encompass a process‐level communication overlapping strategy, thread‐level data partitioning and layout approaches, a remote memory access optimized master‐slave communication scheme, and a thread‐level data reuse and overlapping strategy. Through these optimizations, we achieve significant improvements in each iteration, with a kernel function speedup of approximately 59 and an overall program speedup of about 14. Our findings demonstrate the ability of our proposed optimization strategies to overcome the computational challenges associated with 3D EFWI, providing a promising framework for future advancements in the field of subsurface imaging.","PeriodicalId":502604,"journal":{"name":"Engineering Reports","volume":"45 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139246331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}