Journal of Classification最新文献

筛选
英文 中文
Interaction Identification and Clique Screening for Classification with Ultra-high Dimensional Discrete Features 超高维离散特征分类中的交互识别与团块筛选
IF 2 4区 计算机科学
Journal of Classification Pub Date : 2021-09-11 DOI: 10.1007/s00357-021-09399-0
An, Baiguo, Feng, Guozhong, Guo, Jianhua
{"title":"Interaction Identification and Clique Screening for Classification with Ultra-high Dimensional Discrete Features","authors":"An, Baiguo, Feng, Guozhong, Guo, Jianhua","doi":"10.1007/s00357-021-09399-0","DOIUrl":"https://doi.org/10.1007/s00357-021-09399-0","url":null,"abstract":"<p>Interactions have greatly influenced recent scientific discoveries, but the identification of interactions is challenging in ultra-high dimensions. In this study, we propose an interaction identification method for classification with ultra-high dimensional discrete features. We utilize clique sets to capture interactions among features, where features in a common clique have interactions that can be used for classification. The number of features related to the interaction is the size of the clique. Hence, our method can consider interactions caused by more than two feature variables. We propose a Kullback-Leibler divergence-based approach to correctly identify the clique sets with a probability that tends to 1 as the sample size tends to infinity. A clique screening method is then proposed to filter out clique sets that are useless for classification, and the strong sure screening property can be guaranteed. Finally, a clique naïve Bayes classifier is proposed for classification. Numerical studies demonstrate that our proposed approach performs very well.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"8 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Spatial Representation of Consumer Dispersion Patterns via a New Multi-level Latent Class Methodology 基于一种新的多层次潜在类方法的消费者分散模式的空间表示
IF 2 4区 计算机科学
Journal of Classification Pub Date : 2021-09-08 DOI: 10.1007/s00357-021-09398-1
Sunghoon Kim, Ashley Stadler Blank, W. DeSarbo, J. Vermunt
{"title":"The Spatial Representation of Consumer Dispersion Patterns via a New Multi-level Latent Class Methodology","authors":"Sunghoon Kim, Ashley Stadler Blank, W. DeSarbo, J. Vermunt","doi":"10.1007/s00357-021-09398-1","DOIUrl":"https://doi.org/10.1007/s00357-021-09398-1","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"218 - 239"},"PeriodicalIF":2.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42586415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing Boosting and Bagging for Decision Trees of Rankings 排名决策树的Boosting和Bagging比较
IF 2 4区 计算机科学
Journal of Classification Pub Date : 2021-09-03 DOI: 10.1007/s00357-021-09397-2
Plaia, Antonella, Buscemi, Simona, Fürnkranz, Johannes, Mencía, Eneldo Loza
{"title":"Comparing Boosting and Bagging for Decision Trees of Rankings","authors":"Plaia, Antonella, Buscemi, Simona, Fürnkranz, Johannes, Mencía, Eneldo Loza","doi":"10.1007/s00357-021-09397-2","DOIUrl":"https://doi.org/10.1007/s00357-021-09397-2","url":null,"abstract":"<p>Decision tree learning is among the most popular and most traditional families of machine learning algorithms. While these techniques excel in being quite intuitive and interpretable, they also suffer from instability: small perturbations in the training data may result in big changes in the predictions. The so-called ensemble methods combine the output of multiple trees, which makes the decision more reliable and stable. They have been primarily applied to numeric prediction problems and to classification tasks. In the last years, some attempts to extend the ensemble methods to ordinal data can be found in the literature, but no concrete methodology has been provided for preference data. In this paper, we extend decision trees, and in the following also ensemble methods to ranking data. In particular, we propose a theoretical and computational definition of bagging and boosting, two of the best known ensemble methods. In an experimental study using simulated data and real-world datasets, our results confirm that known results from classification, such as that boosting outperforms bagging, could be successfully carried over to the ranking case.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"135 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Partition of Interval-Valued Observations Using Regression 区间值观测值的回归分割
IF 2 4区 计算机科学
Journal of Classification Pub Date : 2021-08-28 DOI: 10.1007/s00357-021-09394-5
Fei Liu, L. Billard
{"title":"Partition of Interval-Valued Observations Using Regression","authors":"Fei Liu, L. Billard","doi":"10.1007/s00357-021-09394-5","DOIUrl":"https://doi.org/10.1007/s00357-021-09394-5","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"55 - 77"},"PeriodicalIF":2.0,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09394-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51951585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models 诊断分类模型的具有单调性约束的Gibbs采样算法
IF 2 4区 计算机科学
Journal of Classification Pub Date : 2021-07-31 DOI: 10.1007/s00357-021-09392-7
K. Yamaguchi, J. Templin
{"title":"A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models","authors":"K. Yamaguchi, J. Templin","doi":"10.1007/s00357-021-09392-7","DOIUrl":"https://doi.org/10.1007/s00357-021-09392-7","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"24 - 54"},"PeriodicalIF":2.0,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09392-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44749155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Estimating the Covariance Matrix of the Maximum Likelihood Estimator Under Linear Cluster-Weighted Models 线性聚类加权模型下最大似然估计的协方差矩阵估计
IF 2 4区 计算机科学
Journal of Classification Pub Date : 2021-07-31 DOI: 10.1007/s00357-021-09390-9
Gabriele Soffritti
{"title":"Estimating the Covariance Matrix of the Maximum Likelihood Estimator Under Linear Cluster-Weighted Models","authors":"Gabriele Soffritti","doi":"10.1007/s00357-021-09390-9","DOIUrl":"https://doi.org/10.1007/s00357-021-09390-9","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 1","pages":"594 - 625"},"PeriodicalIF":2.0,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09390-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47103588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Editorial: Journal of Classification Vol. 38-2 社论:分类杂志第38-2卷
IF 2 4区 计算机科学
Journal of Classification Pub Date : 2021-07-01 DOI: 10.1007/s00357-021-09393-6
P. McNicholas
{"title":"Editorial: Journal of Classification Vol. 38-2","authors":"P. McNicholas","doi":"10.1007/s00357-021-09393-6","DOIUrl":"https://doi.org/10.1007/s00357-021-09393-6","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 1","pages":"187 - 187"},"PeriodicalIF":2.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09393-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49474837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Bayesian Analysis of Parsimonious Gaussian Mixture Models 朴素高斯混合模型的贝叶斯分析
IF 2 4区 计算机科学
Journal of Classification Pub Date : 2021-06-04 DOI: 10.1007/s00357-021-09391-8
Xiang Lu, Yaoxiang Li, Tanzy M. T. Love
{"title":"On Bayesian Analysis of Parsimonious Gaussian Mixture Models","authors":"Xiang Lu, Yaoxiang Li, Tanzy M. T. Love","doi":"10.1007/s00357-021-09391-8","DOIUrl":"https://doi.org/10.1007/s00357-021-09391-8","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 1","pages":"576 - 593"},"PeriodicalIF":2.0,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09391-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46001887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering 基于惩罚模型的聚类中的群收缩估计
IF 2 4区 计算机科学
Journal of Classification Pub Date : 2021-05-17 DOI: 10.1007/s00357-022-09421-z
A. Casa, A. Cappozzo, Michael Fop
{"title":"Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering","authors":"A. Casa, A. Cappozzo, Michael Fop","doi":"10.1007/s00357-022-09421-z","DOIUrl":"https://doi.org/10.1007/s00357-022-09421-z","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"648-674"},"PeriodicalIF":2.0,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44074402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Model-Free Subject Selection Method for Active Learning Classification Procedures 一种用于主动学习分类程序的无模型主题选择方法
IF 2 4区 计算机科学
Journal of Classification Pub Date : 2021-05-10 DOI: 10.1007/s00357-021-09388-3
Bo-Shiang Ke, Y. Chang
{"title":"A Model-Free Subject Selection Method for Active Learning Classification Procedures","authors":"Bo-Shiang Ke, Y. Chang","doi":"10.1007/s00357-021-09388-3","DOIUrl":"https://doi.org/10.1007/s00357-021-09388-3","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 1","pages":"544 - 555"},"PeriodicalIF":2.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09388-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41851801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信