排名决策树的Boosting和Bagging比较

IF 1.8 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Plaia, Antonella, Buscemi, Simona, Fürnkranz, Johannes, Mencía, Eneldo Loza
{"title":"排名决策树的Boosting和Bagging比较","authors":"Plaia, Antonella, Buscemi, Simona, Fürnkranz, Johannes, Mencía, Eneldo Loza","doi":"10.1007/s00357-021-09397-2","DOIUrl":null,"url":null,"abstract":"<p>Decision tree learning is among the most popular and most traditional families of machine learning algorithms. While these techniques excel in being quite intuitive and interpretable, they also suffer from instability: small perturbations in the training data may result in big changes in the predictions. The so-called ensemble methods combine the output of multiple trees, which makes the decision more reliable and stable. They have been primarily applied to numeric prediction problems and to classification tasks. In the last years, some attempts to extend the ensemble methods to ordinal data can be found in the literature, but no concrete methodology has been provided for preference data. In this paper, we extend decision trees, and in the following also ensemble methods to ranking data. In particular, we propose a theoretical and computational definition of bagging and boosting, two of the best known ensemble methods. In an experimental study using simulated data and real-world datasets, our results confirm that known results from classification, such as that boosting outperforms bagging, could be successfully carried over to the ranking case.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"135 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparing Boosting and Bagging for Decision Trees of Rankings\",\"authors\":\"Plaia, Antonella, Buscemi, Simona, Fürnkranz, Johannes, Mencía, Eneldo Loza\",\"doi\":\"10.1007/s00357-021-09397-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Decision tree learning is among the most popular and most traditional families of machine learning algorithms. While these techniques excel in being quite intuitive and interpretable, they also suffer from instability: small perturbations in the training data may result in big changes in the predictions. The so-called ensemble methods combine the output of multiple trees, which makes the decision more reliable and stable. They have been primarily applied to numeric prediction problems and to classification tasks. In the last years, some attempts to extend the ensemble methods to ordinal data can be found in the literature, but no concrete methodology has been provided for preference data. In this paper, we extend decision trees, and in the following also ensemble methods to ranking data. In particular, we propose a theoretical and computational definition of bagging and boosting, two of the best known ensemble methods. In an experimental study using simulated data and real-world datasets, our results confirm that known results from classification, such as that boosting outperforms bagging, could be successfully carried over to the ranking case.</p>\",\"PeriodicalId\":50241,\"journal\":{\"name\":\"Journal of Classification\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00357-021-09397-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-021-09397-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

决策树学习是最流行和最传统的机器学习算法家族之一。虽然这些技术在相当直观和可解释方面表现出色,但它们也存在不稳定性:训练数据中的小扰动可能导致预测的大变化。所谓的集成方法将多个树的输出组合在一起,使决策更加可靠和稳定。它们主要应用于数值预测问题和分类任务。在过去的几年中,文献中有一些将集成方法扩展到有序数据的尝试,但没有提供针对偏好数据的具体方法。在本文中,我们将决策树,以及随后的集成方法扩展到排序数据。特别地,我们提出了bagging和boosting这两种最著名的系综方法的理论和计算定义。在一项使用模拟数据和真实世界数据集的实验研究中,我们的结果证实了分类的已知结果,例如提升优于套袋,可以成功地延续到排名案例中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Boosting and Bagging for Decision Trees of Rankings

Decision tree learning is among the most popular and most traditional families of machine learning algorithms. While these techniques excel in being quite intuitive and interpretable, they also suffer from instability: small perturbations in the training data may result in big changes in the predictions. The so-called ensemble methods combine the output of multiple trees, which makes the decision more reliable and stable. They have been primarily applied to numeric prediction problems and to classification tasks. In the last years, some attempts to extend the ensemble methods to ordinal data can be found in the literature, but no concrete methodology has been provided for preference data. In this paper, we extend decision trees, and in the following also ensemble methods to ranking data. In particular, we propose a theoretical and computational definition of bagging and boosting, two of the best known ensemble methods. In an experimental study using simulated data and real-world datasets, our results confirm that known results from classification, such as that boosting outperforms bagging, could be successfully carried over to the ranking case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Classification
Journal of Classification 数学-数学跨学科应用
CiteScore
3.60
自引率
5.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信