Journal of Computational Mathematics最新文献

筛选
英文 中文
Bézier Splines Interpolation on Stiefel and Grassmann Manifolds Stiefel 和格拉斯曼流形上的贝塞尔样条插值法
IF 0.9 4区 数学
Journal of Computational Mathematics Pub Date : 2023-11-01 DOI: 10.4208/jcm.2303-m2022-0201
Ines Adouani and Chafik Samir
{"title":"Bézier Splines Interpolation on Stiefel and Grassmann Manifolds","authors":"Ines Adouani and Chafik Samir","doi":"10.4208/jcm.2303-m2022-0201","DOIUrl":"https://doi.org/10.4208/jcm.2303-m2022-0201","url":null,"abstract":"","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":"19 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139293201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information 利用非精确一阶信息的自适应正则化准牛顿法
IF 0.9 4区 数学
Journal of Computational Mathematics Pub Date : 2023-11-01 DOI: 10.4208/jcm.2306-m2022-0279
Hongzheng Ruan and Wei Hong Yang
{"title":"Adaptive Regularized Quasi-Newton Method Using Inexact First-Order Information","authors":"Hongzheng Ruan and Wei Hong Yang","doi":"10.4208/jcm.2306-m2022-0279","DOIUrl":"https://doi.org/10.4208/jcm.2306-m2022-0279","url":null,"abstract":"","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":"188 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139299025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Two Any Order Spectral Volume Methods for 1-D Linear Hyperbolic Equations with Degenerate Variable Coefficients 分析具有畸变变系数的一维线性双曲方程的两种任意阶谱量法
IF 0.9 4区 数学
Journal of Computational Mathematics Pub Date : 2023-11-01 DOI: 10.4208/jcm.2305-m2021-0330
Minqiang Xu, Yan-peng Yuan, Waixiang Cao and Qingsong Zou
{"title":"Analysis of Two Any Order Spectral Volume Methods for 1-D Linear Hyperbolic Equations with Degenerate Variable Coefficients","authors":"Minqiang Xu, Yan-peng Yuan, Waixiang Cao and Qingsong Zou","doi":"10.4208/jcm.2305-m2021-0330","DOIUrl":"https://doi.org/10.4208/jcm.2305-m2021-0330","url":null,"abstract":"","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":"92 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139299067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Uniform Convergent Petrov-Galerkin Method for a Class of Turning Point Problems 一类拐点问题的一致收敛Petrov-Galerkin方法
4区 数学
Journal of Computational Mathematics Pub Date : 2023-11-01 DOI: 10.4208/jcm.2305-m2022-0171
Li Feng and Zhongyi Huang
{"title":"A Uniform Convergent Petrov-Galerkin Method for a Class of Turning Point Problems","authors":"Li Feng and Zhongyi Huang","doi":"10.4208/jcm.2305-m2022-0171","DOIUrl":"https://doi.org/10.4208/jcm.2305-m2022-0171","url":null,"abstract":"","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":"72 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135220890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Finite Difference Method for Two Dimensional Elliptic Interface Problems with Imperfect Contact 具有不完全接触的二维椭圆界面问题的有限差分法
4区 数学
Journal of Computational Mathematics Pub Date : 2023-11-01 DOI: 10.4208/jcm.2302-m2022-0111
Fujun Cao, Dongxu Jia, Dongfang Yuan and Guangwei Yuan
{"title":"A Finite Difference Method for Two Dimensional Elliptic Interface Problems with Imperfect Contact","authors":"Fujun Cao, Dongxu Jia, Dongfang Yuan and Guangwei Yuan","doi":"10.4208/jcm.2302-m2022-0111","DOIUrl":"https://doi.org/10.4208/jcm.2302-m2022-0111","url":null,"abstract":"In this paper two dimensional elliptic interface problem with imperfect contact is considered, which is featured by the implicit jump condition imposed on the imperfect contact interface, and the jumping quantity of the unknown is related to the flux across the interface. A finite difference method is constructed for the 2D elliptic interface problems with straight and curve interface shapes. Then, the stability and convergence analysis are given for the constructed scheme. Further, in particular case, it is proved to be monotone. Numerical examples for elliptic interface problems with straight and curve interface shapes are tested to verify the performance of the scheme. The numerical results demonstrate that it obtains approximately second-order accuracy for elliptic interface equations with implicit jump condition.","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":"31 11-12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135272647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error Analysis for Parabolic Optimal Control Problems with Measure Data in a Nonconvex Polygonal Domain 非凸多边形域中有测量数据的抛物线优化控制问题的误差分析
IF 0.9 4区 数学
Journal of Computational Mathematics Pub Date : 2023-11-01 DOI: 10.4208/jcm.2305-m2022-0215
Pratibha Shakya
{"title":"Error Analysis for Parabolic Optimal Control Problems with Measure Data in a Nonconvex Polygonal Domain","authors":"Pratibha Shakya","doi":"10.4208/jcm.2305-m2022-0215","DOIUrl":"https://doi.org/10.4208/jcm.2305-m2022-0215","url":null,"abstract":"","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":"17 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139294507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monotonicity Corrections for Nine-Point Scheme of Diffusion Equations 扩散方程九点格式的单调性修正
4区 数学
Journal of Computational Mathematics Pub Date : 2023-11-01 DOI: 10.4208/jcm.2303-m2022-0139
Wang Kong, Zhenying Hong, Guangwei Yuan and Zhiqiang Sheng
{"title":"Monotonicity Corrections for Nine-Point Scheme of Diffusion Equations","authors":"Wang Kong, Zhenying Hong, Guangwei Yuan and Zhiqiang Sheng","doi":"10.4208/jcm.2303-m2022-0139","DOIUrl":"https://doi.org/10.4208/jcm.2303-m2022-0139","url":null,"abstract":"","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":"6 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135166028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Nyström Method for Elastic Wave Scattering By Unbounded Rough Surfaces 无界粗糙表面弹性波散射的尼斯特伦方法
IF 0.9 4区 数学
Journal of Computational Mathematics Pub Date : 2023-11-01 DOI: 10.4208/jcm.2304-m2022-0185
Jianliang Li, Xiaoli Liu, Bo Zhang and Haiwen Zhang
{"title":"The Nyström Method for Elastic Wave Scattering By Unbounded Rough Surfaces","authors":"Jianliang Li, Xiaoli Liu, Bo Zhang and Haiwen Zhang","doi":"10.4208/jcm.2304-m2022-0185","DOIUrl":"https://doi.org/10.4208/jcm.2304-m2022-0185","url":null,"abstract":"","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":"44 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139294940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerated Symmetric ADMM and Its Applications in Large-Scale Signal Processing 加速对称 ADMM 及其在大规模信号处理中的应用
IF 0.9 4区 数学
Journal of Computational Mathematics Pub Date : 2023-11-01 DOI: 10.4208/jcm.2305-m2021-0107
Jianchao Bai, Ke Guo, Junli Liang, Yang Jing and H.C. So
{"title":"Accelerated Symmetric ADMM and Its Applications in Large-Scale Signal Processing","authors":"Jianchao Bai, Ke Guo, Junli Liang, Yang Jing and H.C. So","doi":"10.4208/jcm.2305-m2021-0107","DOIUrl":"https://doi.org/10.4208/jcm.2305-m2021-0107","url":null,"abstract":"","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":"45 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139301946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variable Step-Size BDF3 Method for Allen-Cahn Equation Allen-Cahn方程的变步长BDF3方法
4区 数学
Journal of Computational Mathematics Pub Date : 2023-11-01 DOI: 10.4208/jcm.2304-m2022-0140
Minghua Chen, Fan Yu, Qingdong Zhang and Zhimin Zhang
{"title":"Variable Step-Size BDF3 Method for Allen-Cahn Equation","authors":"Minghua Chen, Fan Yu, Qingdong Zhang and Zhimin Zhang","doi":"10.4208/jcm.2304-m2022-0140","DOIUrl":"https://doi.org/10.4208/jcm.2304-m2022-0140","url":null,"abstract":"In this work, we analyze the three-step backward differentiation formula (BDF3) method for solving the Allen-Cahn equation on variable grids. For BDF2 method, the discrete orthogonal convolution (DOC) kernels are positive, the stability and convergence analysis are well established in [Liao and Zhang, newblock Math. Comp., textbf{90} (2021) 1207--1226; Chen, Yu, and Zhang, newblock SIAM J. Numer. Anal., Major Revised]. However, the numerical analysis for BDF3 method with variable steps seems to be highly nontrivial, since the DOC kernels are not always positive. By developing a novel spectral norm inequality, the unconditional stability and convergence are rigorously proved under the updated step ratio restriction $r_k:=tau_k/tau_{k-1}leq 1.405$ (compared with $r_kleq 1.199$ in [Calvo and Grigorieff, newblock BIT. textbf{42} (2002) 689--701]) for BDF3 method. Finally, numerical experiments are performed to illustrate the theoretical results. To the best of our knowledge, this is the first theoretical analysis of variable steps BDF3 method for the Allen-Cahn equation.","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":"17 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135714975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信