具有不完全接触的二维椭圆界面问题的有限差分法

IF 0.9 4区 数学 Q2 MATHEMATICS
Fujun Cao, Dongxu Jia, Dongfang Yuan and Guangwei Yuan
{"title":"具有不完全接触的二维椭圆界面问题的有限差分法","authors":"Fujun Cao, Dongxu Jia, Dongfang Yuan and Guangwei Yuan","doi":"10.4208/jcm.2302-m2022-0111","DOIUrl":null,"url":null,"abstract":"In this paper two dimensional elliptic interface problem with imperfect contact is considered, which is featured by the implicit jump condition imposed on the imperfect contact interface, and the jumping quantity of the unknown is related to the flux across the interface. A finite difference method is constructed for the 2D elliptic interface problems with straight and curve interface shapes. Then, the stability and convergence analysis are given for the constructed scheme. Further, in particular case, it is proved to be monotone. Numerical examples for elliptic interface problems with straight and curve interface shapes are tested to verify the performance of the scheme. The numerical results demonstrate that it obtains approximately second-order accuracy for elliptic interface equations with implicit jump condition.","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":"31 11-12","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Finite Difference Method for Two Dimensional Elliptic Interface Problems with Imperfect Contact\",\"authors\":\"Fujun Cao, Dongxu Jia, Dongfang Yuan and Guangwei Yuan\",\"doi\":\"10.4208/jcm.2302-m2022-0111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper two dimensional elliptic interface problem with imperfect contact is considered, which is featured by the implicit jump condition imposed on the imperfect contact interface, and the jumping quantity of the unknown is related to the flux across the interface. A finite difference method is constructed for the 2D elliptic interface problems with straight and curve interface shapes. Then, the stability and convergence analysis are given for the constructed scheme. Further, in particular case, it is proved to be monotone. Numerical examples for elliptic interface problems with straight and curve interface shapes are tested to verify the performance of the scheme. The numerical results demonstrate that it obtains approximately second-order accuracy for elliptic interface equations with implicit jump condition.\",\"PeriodicalId\":50225,\"journal\":{\"name\":\"Journal of Computational Mathematics\",\"volume\":\"31 11-12\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/jcm.2302-m2022-0111\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/jcm.2302-m2022-0111","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Finite Difference Method for Two Dimensional Elliptic Interface Problems with Imperfect Contact
In this paper two dimensional elliptic interface problem with imperfect contact is considered, which is featured by the implicit jump condition imposed on the imperfect contact interface, and the jumping quantity of the unknown is related to the flux across the interface. A finite difference method is constructed for the 2D elliptic interface problems with straight and curve interface shapes. Then, the stability and convergence analysis are given for the constructed scheme. Further, in particular case, it is proved to be monotone. Numerical examples for elliptic interface problems with straight and curve interface shapes are tested to verify the performance of the scheme. The numerical results demonstrate that it obtains approximately second-order accuracy for elliptic interface equations with implicit jump condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
1130
审稿时长
2 months
期刊介绍: Journal of Computational Mathematics (JCM) is an international scientific computing journal founded by Professor Feng Kang in 1983, which is the first Chinese computational mathematics journal published in English. JCM covers all branches of modern computational mathematics such as numerical linear algebra, numerical optimization, computational geometry, numerical PDEs, and inverse problems. JCM has been sponsored by the Institute of Computational Mathematics of the Chinese Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信