{"title":"Non-delay limit in the energy space from the nonlinear damped wave equation to the nonlinear heat equation","authors":"Takahisa Inui, Shuji Machihara","doi":"10.1142/s0219891622500126","DOIUrl":"https://doi.org/10.1142/s0219891622500126","url":null,"abstract":"We consider a singular limit problem from the damped wave equation with a power type nonlinearity (NLDW) to the corresponding heat equation (NLH). We call our singular limit problem non-delay limit. We show that the solution of NLDW goes to the one of NLH in [Formula: see text] topology under the both [Formula: see text] regularity solutions. We also obtain the positive convergence rate in the weaker topology [Formula: see text]. Moreover, with restriction of the range of power, if the solution to NLH is global and decays to zero, then we get the global-in-time uniform convergence of the non-delay limit.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43848694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regularity and global structure for Hamilton–Jacobi equations with convex Hamiltonian","authors":"Tian-Hong Li, Jinghua Wang, Hairui Wen","doi":"10.1142/s0219891621500132","DOIUrl":"https://doi.org/10.1142/s0219891621500132","url":null,"abstract":"We consider the multidimensional Hamilton–Jacobi (HJ) equation [Formula: see text] with [Formula: see text] being a constant and for bounded [Formula: see text] initial data. When [Formula: see text], this is the typical case of interest with a uniformly convex Hamiltonian. When [Formula: see text], this is the famous Eikonal equation from geometric optics, the Hamiltonian being Lipschitz continuous with homogeneity [Formula: see text]. We intend to fill the gap in between these two cases. When [Formula: see text], the Hamiltonian [Formula: see text] is not uniformly convex and is only [Formula: see text] in any neighborhood of [Formula: see text], which causes new difficulties. In particular, points on characteristics emanating from points with vanishing gradient of the initial data could be “bad” points, so the singular set is more complicated than what is observed in the case [Formula: see text]. We establish here the regularity of solutions and the global structure of the singular set from a topological standpoint: the solution inherits the regularity of the initial data in the complement of the singular set and there is a one-to-one correspondence between the connected components of the singular set and the path-connected components of the set [Formula: see text].","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46810724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"L2-type contraction of viscous shocks for scalar conservation laws","authors":"L. Stokols","doi":"10.1142/s0219891621500089","DOIUrl":"https://doi.org/10.1142/s0219891621500089","url":null,"abstract":"We study small shocks of 1D scalar viscous conservation laws with uniformly convex flux and nonlinear dissipation. We show that such shocks are [Formula: see text] stable independently of the strength of the dissipation, even with large perturbations. The proof uses the relative entropy method with a spatially-inhomogeneous pseudo-norm.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41991108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dissipative structure and asymptotic profiles for symmetric hyperbolic systems with memory","authors":"Shogo Taniue, S. Kawashima","doi":"10.1142/s0219891621500144","DOIUrl":"https://doi.org/10.1142/s0219891621500144","url":null,"abstract":"We study symmetric hyperbolic systems with memory-type dissipation and investigate their dissipative structures under Craftsmanship condition. We treat two cases: memory-type diffusion and memory-type relaxation, and observe that the dissipative structures of these two cases are essentially different. Namely, we show that the dissipative structure of the system with memory-type diffusion is of the standard type, while that of the system with memory-type relaxation is of the regularity-loss type. Moreover, we investigate the asymptotic profiles of the solutions for [Formula: see text]. In the diffusion case, it is proved that the systems with memory and without memory have the same asymptotic profile for [Formula: see text], which is given by the superposition of linear diffusion waves. We have the same result also in the relaxation case under enough regularity assumption on the initial data.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48903522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local well-posedness for the quantum Zakharov system in three and higher dimensions","authors":"Isao Kato","doi":"10.1142/s0219891621500077","DOIUrl":"https://doi.org/10.1142/s0219891621500077","url":null,"abstract":"We study the Cauchy problem associated with a quantum Zakharov-type system in three and higher spatial dimensions.Taking the quantum parameter to unit and developing Fourier restriction norm arguments, we establish local well-posedness property for wider range than the one known for the Zakharov system.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43143147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shadow wave solutions for a scalar two-flux conservation law with Rankine–Hugoniot deficit","authors":"Tanja Kruni'c, M. Nedeljkov","doi":"10.1142/s021989162150017x","DOIUrl":"https://doi.org/10.1142/s021989162150017x","url":null,"abstract":"This paper deals with hyperbolic conservation laws exhibiting a flux discontinuity at the origin and which does not admit a weak solution satisfying the Rankine–Hugoniot jump condition. We therefore seek unbounded solutions in the form of shadow waves supported by at the origin. The shadow waves are defined as nets of piecewise constant functions approximating a shock wave to which we add a delta function and possibly another unbounded part.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44182027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-isothermal viscoelastic flows with conservation laws and relaxation","authors":"S. Boyaval, Mark Dostal'ik","doi":"10.1142/s0219891622500096","DOIUrl":"https://doi.org/10.1142/s0219891622500096","url":null,"abstract":"We propose a system of conservation laws with relaxation source terms (i.e. balance laws) for non-isothermal viscoelastic flows of Maxwell fluids. The system is an extension of the polyconvex elastodynamics of hyperelastic bodies using additional structure variables. It is obtained by writing the Helmholtz free energy as the sum of a volumetric energy density (function of the determinant of the deformation gradient det F and the temperature [Formula: see text] like the standard perfect-gas law or Noble–Abel stiffened-gas law) plus a polyconvex strain energy density function of F, [Formula: see text] and of symmetric positive-definite structure tensors that relax at a characteristic time scale. One feature of our model is that it unifies various ideal materials ranging from hyperelastic solids to perfect fluids, encompassing fluids with memory like Maxwell fluids. We establish a strictly convex mathematical entropy to show that the system is symmetric-hyperbolic. Another feature of the proposed model is therefore the short-time existence and uniqueness of smooth solutions, which define genuinely causal viscoelastic flows with waves propagating at finite speed. In heat-conductors, we complement the system by a Maxwell–Cattaneo equation for an energy-flux variable. The system is still symmetric-hyperbolic, and smooth evolutions with finite-speed waves remain well-defined.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49542145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of the dissipative structure for the symmetric hyperbolic system with non-symmetric relaxation","authors":"Yoshihiro Ueda","doi":"10.1142/S0219891621500053","DOIUrl":"https://doi.org/10.1142/S0219891621500053","url":null,"abstract":"This paper is concerned with the dissipative structure for the linear symmetric hyperbolic system with non-symmetric relaxation. If the relaxation matrix of the system has symmetric property, Shizu...","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48250077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An inverse scattering theorem for (1 + 1)-dimensional semi-linear wave equations with null conditions","authors":"Mengni Li","doi":"10.1142/S021989162150003X","DOIUrl":"https://doi.org/10.1142/S021989162150003X","url":null,"abstract":"We are interested in the inverse scattering problem for semi-linear wave equations in one dimension. Assuming null conditions, we prove that small data lead to global existence of solutions to (1 +...","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48081423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lipschitz stability for the Hunter–Saxton equation","authors":"Katrin Grunert, M. Tandy","doi":"10.1142/S0219891622500072","DOIUrl":"https://doi.org/10.1142/S0219891622500072","url":null,"abstract":"We study Lipschitz stability in time for [Formula: see text]-dissipative solutions to the Hunter–Saxton equation, where [Formula: see text] is a constant. We define metrics in both Lagrangian and Eulerian coordinates, and establish Lipschitz stability for those metrics.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49442247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}