The Astrophysical Journal最新文献

筛选
英文 中文
The Peculiar Disk Evolution of 4U 1630-472 Observed by Insight-HXMT During its 2022 and 2023 Outbursts Insight-HXMT观测到的2022年和2023年爆发期间4U 1630-472的奇异盘演化
The Astrophysical Journal Pub Date : 2024-10-20 DOI: 10.3847/1538-4357/ad73d7
Jing-Qiang Peng, Shu Zhang, Qing-Cang Shui, Yu-Peng Chen, Shuang-Nan Zhang, Ling-Da Kong, A. Santangelo, Zhuo-Li Yu, Long Ji, Peng-Ju Wang, Zhi Chang, Jian Li and Zhao-sheng Li
{"title":"The Peculiar Disk Evolution of 4U 1630-472 Observed by Insight-HXMT During its 2022 and 2023 Outbursts","authors":"Jing-Qiang Peng, Shu Zhang, Qing-Cang Shui, Yu-Peng Chen, Shuang-Nan Zhang, Ling-Da Kong, A. Santangelo, Zhuo-Li Yu, Long Ji, Peng-Ju Wang, Zhi Chang, Jian Li and Zhao-sheng Li","doi":"10.3847/1538-4357/ad73d7","DOIUrl":"https://doi.org/10.3847/1538-4357/ad73d7","url":null,"abstract":"We study the spectral properties of the black hole X-ray transient binary 4U 1630–472 during its 2022 and 2023 outbursts with Insight-HXMT observations. We find that the outbursts are in peculiar soft states. The effect of the hardening factor on the disk temperature is taken into account by the kerrbb model, and the flux and temperature of the disk are found to follow and for the two outbursts, respectively. The flux–temperature relation is roughly consistent with a standard disk. By fitting with a p-free model, the p-value, the exponent of the radial dependence of the disk temperature, is found to have an anticorrelation with disk temperature. Combining a joint diagnostic analysis with a diagram of the relation between the nonthermal fraction and luminosity, we find a possible scenario that the disk evolves from 2022 to 2023 toward a slim one with a decreasing radiation efficiency, where such an evolution may depend on the fraction of the nonthermal emission in the high soft state.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tidal Spin-up of Subdwarf B Stars 亚矮星 B 星的潮汐自旋上升
The Astrophysical Journal Pub Date : 2024-10-20 DOI: 10.3847/1538-4357/ad7788
Linhao Ma, 林昊 马 and Jim Fuller
{"title":"Tidal Spin-up of Subdwarf B Stars","authors":"Linhao Ma, 林昊 马 and Jim Fuller","doi":"10.3847/1538-4357/ad7788","DOIUrl":"https://doi.org/10.3847/1538-4357/ad7788","url":null,"abstract":"Hot subdwarf B (sdB) stars are stripped helium-burning stars that are often found in close binaries, where they experience strong tidal interactions. The dissipation of tidally excited gravity waves alters their rotational evolution throughout the sdB lifetime. While many sdB binaries have well-measured rotational and orbital frequencies, there have been few theoretical efforts to accurately calculate the tidal torque produced by gravity waves. In this work, we directly calculate the tidal excitation of internal gravity waves in realistic sdB stellar models and integrate the coupled spin–orbit evolution of sdB binaries. We find that for canonical sdB (MsdB = 0.47 M⊙) binaries, the transitional orbital period below which they could reach tidal synchronization in the sdB lifetime is ∼0.2 day, with weak dependence on the companion masses. For low-mass sdBs (MsdB = 0.37 M⊙) formed from more massive progenitor stars, the transitional orbital period becomes ∼0.15 day. These values are very similar to the tidal synchronization boundary (∼0.2 day) evident from observations. We discuss the dependence of tidal torques on stellar radii, and we make predictions for the rapidly rotating white dwarfs formed from synchronized sdB binaries.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stellar Metallicities and Gradients in the Faint M31 Satellites Andromeda XVI and Andromeda XXVIII 微弱的 M31 卫星仙女座 XVI 和仙女座 XXVIII 中的恒星金属性和梯度
The Astrophysical Journal Pub Date : 2024-10-20 DOI: 10.3847/1538-4357/ad76a2
Sal Wanying Fu, Daniel R. Weisz, Else Starkenburg, Nicolas Martin, Michelle L. M. Collins, Alessandro Savino, Michael Boylan-Kolchin, Patrick Côté, Andrew E. Dolphin, Nicolas Longeard, Mario L. Mateo, Francisco J. Mercado, Nathan R. Sandford and Evan D. Skillman
{"title":"Stellar Metallicities and Gradients in the Faint M31 Satellites Andromeda XVI and Andromeda XXVIII","authors":"Sal Wanying Fu, Daniel R. Weisz, Else Starkenburg, Nicolas Martin, Michelle L. M. Collins, Alessandro Savino, Michael Boylan-Kolchin, Patrick Côté, Andrew E. Dolphin, Nicolas Longeard, Mario L. Mateo, Francisco J. Mercado, Nathan R. Sandford and Evan D. Skillman","doi":"10.3847/1538-4357/ad76a2","DOIUrl":"https://doi.org/10.3847/1538-4357/ad76a2","url":null,"abstract":"We present ∼300 stellar metallicity measurements in two faint M31 dwarf galaxies, Andromeda XVI (MV = −7.5) and Andromeda XXVIII (MV = –8.8), derived using metallicity-sensitive calcium H and K narrowband Hubble Space Telescope imaging. These are the first individual stellar metallicities in And XVI (95 stars). Our And XXVIII sample (191 stars) is a factor of ∼15 increase over literature metallicities. For And XVI, we measure , , and ∇[Fe/H] = −0.23 ± 0.15 dex . We find that And XVI is more metal-rich than Milky Way ultrafaint dwarf galaxies of similar luminosity, which may be a result of its unusually extended star formation history. For And XXVIII, we measure , , and ∇[Fe/H]= −0.46 ± 0.10 dex , placing it on the dwarf galaxy mass–metallicity relation. Neither galaxy has a metallicity distribution function (MDF) with an abrupt metal-rich truncation, suggesting that star formation fell off gradually. The stellar metallicity gradient measurements are among the first for faint (L ≲ 106L⊙) galaxies outside the Milky Way halo. Both galaxies’ gradients are consistent with predictions from the FIRE simulations, where an age–gradient strength relationship is the observational consequence of stellar feedback that produces dark matter cores. We include a catalog for community spectroscopic follow-up, including 19 extremely metal-poor ([Fe/H] < –3.0) star candidates, which make up 7% of And XVI’s MDF and 6% of And XXVIII’s.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Experiment on the Influence of Granulation-induced Waves on Solar Chromosphere Heating and Plasma Outflows in a Magnetic Arcade 粒化诱导波对磁拱廊中太阳色球加热和等离子体外流影响的数值实验
The Astrophysical Journal Pub Date : 2024-10-20 DOI: 10.3847/1538-4357/ad7464
M. Kumar, K. Murawski, B. Kuźma, E. K. J. Kilpua, S. Poedts and R. Erdélyi
{"title":"Numerical Experiment on the Influence of Granulation-induced Waves on Solar Chromosphere Heating and Plasma Outflows in a Magnetic Arcade","authors":"M. Kumar, K. Murawski, B. Kuźma, E. K. J. Kilpua, S. Poedts and R. Erdélyi","doi":"10.3847/1538-4357/ad7464","DOIUrl":"https://doi.org/10.3847/1538-4357/ad7464","url":null,"abstract":"This paper offers a fresh perspective on solar chromosphere heating and plasma outflows, focusing on the contribution of waves generated by solar granulation. Utilizing a 2.5D numerical experiment for the partially ionized lower solar atmosphere, we investigate the dissipation of these waves and their impact on plasma outflows and chromospheric heating via ion-neutral collisions. Employing the JOint ANalytical and Numerical Approach code, we adopt two-fluid model equations, examining partially ionized hydrogen plasma dynamics, including protons+electrons and neutrals, treated as two separate fluids that are coupled through ion-neutral collisions. Our investigation focuses on a quiet solar chromosphere region characterized by gravitational stratification and magnetic confinement by an initially set single magnetic arcade. The primary source of the waves is the solar convection beneath the photosphere. Our results demonstrate that ion-neutral collisions result in the dissipation of such waves, releasing thermal energy that heats the chromosphere plasma. Notably, this is accompanied by upward-directed plasma flows. Finally, we conclude that wave dissipation due to ion-neutral collisions in the two-fluid plasma model induces chromosphere heating and plasma outflows.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultraviolet Flux and Spectral Variability Study of Blazars Observed with UVIT/AstroSat 利用 UVIT/AstroSat 观测的耀斑星紫外线通量和光谱变异性研究
The Astrophysical Journal Pub Date : 2024-10-20 DOI: 10.3847/1538-4357/ad702e
M. Reshma, Aditi Agarwal, C. S. Stalin, Prajwel Joseph, Akanksha Dagore, Amit Kumar Mandal, Ashish Devaraj and S. B. Gudennavar
{"title":"Ultraviolet Flux and Spectral Variability Study of Blazars Observed with UVIT/AstroSat","authors":"M. Reshma, Aditi Agarwal, C. S. Stalin, Prajwel Joseph, Akanksha Dagore, Amit Kumar Mandal, Ashish Devaraj and S. B. Gudennavar","doi":"10.3847/1538-4357/ad702e","DOIUrl":"https://doi.org/10.3847/1538-4357/ad702e","url":null,"abstract":"Blazars, the peculiar class of active galactic nuclei, are known to show flux variations across the accessible electromagnetic spectrum. Though they have been studied extensively for their flux variability characteristics across wavelengths, information on their ultraviolet (UV) flux variations on timescales of hours is very limited. Here, we present the first UV flux variability study on intraday timescales of a sample of ten blazars comprising two flat-spectrum radio quasars (FSRQs) and eight BL Lacertae objects (BL Lacs). These objects, spanning a redshift (z) range of 0.034 ≤ z ≤ 1.003, were observed in the far-UV (1300−1800 Å) and near-UV (2000−3000 Å) wavebands using the ultraviolet imaging telescope on board AstroSat. UV flux variations on timescales of hours were detected in nine sources out of the observed ten blazars. The spectral variability analysis showed a bluer-when-brighter trend with no difference in the UV spectral variability behavior between the studied sample of FSRQs and BL Lacs. The observed UV flux and spectral variability in our sample of both FSRQs and BL Lacs revealed that the observed UV emission in them is dominated by jet synchrotron process.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A More Precise Measurement of the Radius of PSR J0740+6620 Using Updated NICER Data 利用更新的 NICER 数据更精确地测量 PSR J0740+6620 的半径
The Astrophysical Journal Pub Date : 2024-10-17 DOI: 10.3847/1538-4357/ad5f1e
Alexander J. Dittmann, M. Coleman Miller, Frederick K. Lamb, Isiah M. Holt, Cecilia Chirenti, Michael T. Wolff, Slavko Bogdanov, Sebastien Guillot, Wynn C. G. Ho, Sharon M. Morsink, Zaven Arzoumanian and Keith C. Gendreau
{"title":"A More Precise Measurement of the Radius of PSR J0740+6620 Using Updated NICER Data","authors":"Alexander J. Dittmann, M. Coleman Miller, Frederick K. Lamb, Isiah M. Holt, Cecilia Chirenti, Michael T. Wolff, Slavko Bogdanov, Sebastien Guillot, Wynn C. G. Ho, Sharon M. Morsink, Zaven Arzoumanian and Keith C. Gendreau","doi":"10.3847/1538-4357/ad5f1e","DOIUrl":"https://doi.org/10.3847/1538-4357/ad5f1e","url":null,"abstract":"PSR J0740+6620 is the neutron star with the highest precisely determined mass, inferred from radio observations to be 2.08 ± 0.07 M⊙. Measurements of its radius therefore hold promise to constrain the properties of the cold, catalyzed, high-density matter in neutron star cores. Previously, Miller et al. and Riley et al. reported measurements of the radius of PSR J0740+6620 based on Neutron Star Interior Composition Explorer (NICER) observations accumulated through 2020 April 17, and an exploratory analysis utilizing NICER background estimates and a data set accumulated through 2021 December 28 was presented in Salmi et al. Here we report an updated radius measurement, derived by fitting models of X-ray emission from the neutron star surface to NICER data accumulated through 2022 April 21, totaling ∼1.1 Ms additional exposure compared to the data set analyzed in Miller et al. and Riley et al., and to data from XMM-Newton observations. We find that the equatorial circumferential radius of PSR J0740+6620 is km (68% credibility), a fractional uncertainty ∼83% the width of that reported in Miller et al., in line with statistical expectations given the additional data. If we were to require the radius to be less than 16 km, as was done in Salmi et al., then our 68% credible region would become km, which is close to the headline result of Salmi et al. Our updated measurements, along with other laboratory and astrophysical constraints, imply a slightly softer equation of state than that inferred from our previous measurements.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photometric White Dwarf Rotation 测光白矮星自转
The Astrophysical Journal Pub Date : 2024-10-17 DOI: 10.3847/1538-4357/ad6987
Gabriela Oliveira da Rosa, S. O. Kepler, L. T. T. Soethe, Alejandra D. Romero and Keaton J. Bell
{"title":"Photometric White Dwarf Rotation","authors":"Gabriela Oliveira da Rosa, S. O. Kepler, L. T. T. Soethe, Alejandra D. Romero and Keaton J. Bell","doi":"10.3847/1538-4357/ad6987","DOIUrl":"https://doi.org/10.3847/1538-4357/ad6987","url":null,"abstract":"We present a census of photometrically detected rotation periods for white dwarf (WD) stars. We analyzed the light curves of 9285 WD stars observed by the Transiting Exoplanet Survey Satellite up to Sector 69. Using Fourier transform analyses and the TESS_localize software, we detected variability periods for 318 WD stars. The 115 high-probability likely single WDs in our sample have a median rotational period of 3.9 hr and a median absolute deviation of 3.5 hr. Our distribution is significantly different from the distribution of the rotational period from asteroseismology, which exhibits a longer median period of 24.2 hr and a median absolute deviation of 12.1 hr. In addition, we reported nonpulsating periods for three known pulsating WDs with rotational periods previously determined by asteroseismology: NGC 1501, TIC 7675859, and G226-29. We also calculated evolutionary models including six angular momentum transfer mechanisms from the literature throughout evolution in an attempt to reproduce our findings. Our models indicate that the temperature–period relation of most observational data is best fitted by models with low metallicity, probably indicating problems with the computations of angular momentum loss during the high-mass-loss phase. Our models also generate internal magnetic fields through the Tayler–Spruit dynamo.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of the Magnetic Braking Laws on the Evolution of Persistent and Transient Low-mass X-Ray Binaries 磁制动定律对持久和瞬变低质量 X 射线双星演化的影响
The Astrophysical Journal Pub Date : 2024-10-17 DOI: 10.3847/1538-4357/ad7824
Hao-Ran Yang and Xiang-Dong Li
{"title":"The Influence of the Magnetic Braking Laws on the Evolution of Persistent and Transient Low-mass X-Ray Binaries","authors":"Hao-Ran Yang and Xiang-Dong Li","doi":"10.3847/1538-4357/ad7824","DOIUrl":"https://doi.org/10.3847/1538-4357/ad7824","url":null,"abstract":"Swift J1858.6−0814 (hereafter J1858) is a transient neutron star (NS) low-mass X-ray binary (LMXB). There is controversy regarding its donor mass derived from observations and theoretical calculations. In this paper, we adopt seven magnetic braking (MB) prescriptions suggested in the literature and different metallicity Z to simulate the evolution of the LMXB. Our results show that, employing the MB model proposed by A. Reiners & S. Mohanty (“rm12”), the convection- and rotation-boosted (“carb”) model, and the intermediate (“inter”) and convection-boosted (“cboost”) models in K. X. Van et al. can match (part of) the observational parameters of J1858 well. We then apply our method to other observed LMXBs and find that the “rm12” and “inter” MB laws are most promising in explaining transient LMXBs. In comparison, the simulations with the “cboost” and “carb” MB laws are more inclined to reproduce persistent LMXBs and ultracompact X-ray binaries, respectively. Our results, though subject to computational and/or observational bias, show that it is challenging to find a unified MB law that applies to the NS LMXB subpopulations simultaneously, indicating our lack of understanding of the true MB law. In addition, we explore the influence of various MB laws on the magnitude of the bifurcation periods in LMXBs.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding Post-main-sequence Stellar Magnetism: On the Origin of Pollux’s Weak Surface Magnetic Field 了解后主序恒星磁性:关于波吕克斯弱表面磁场的起源
The Astrophysical Journal Pub Date : 2024-10-17 DOI: 10.3847/1538-4357/ad6cd0
Louis Amard, Allan Sacha Brun and Ana Palacios
{"title":"Understanding Post-main-sequence Stellar Magnetism: On the Origin of Pollux’s Weak Surface Magnetic Field","authors":"Louis Amard, Allan Sacha Brun and Ana Palacios","doi":"10.3847/1538-4357/ad6cd0","DOIUrl":"https://doi.org/10.3847/1538-4357/ad6cd0","url":null,"abstract":"The magnetic field of red giants is still poorly understood today. Close to the core, asteroseismology has revealed magnetic fields of several hundred thousand gauss, but close to the surface, spectropolarimetric observations of the red giant Pollux only showed an average field of the order of 1 G. Using the ASH code, we conduct a series of 3D nonlinear magnetohydrodynamical simulations aiming at modeling the dynamo process operating within the extended convective envelope of a star similar to the red giant Pollux. We find that the dynamo is efficient even for the slow rotation considered and that large-scale fields are generated and maintained. We further test the correlation between the scale of the convective motions and the surface magnetic field geometry by varying the Prandtl number in our simulations. We show in particular that the value and the geometry of the modeled surface field depend directly on the coupling scales between the magnetic and the velocity fields, with larger convective cells leading to a stronger large-scale magnetic field. We also verify that the dynamo and the geometry of the resulting field are robust against a change of the initial conditions. We then compare our simulations to the observed field and find average ∣Bℓ∣ of about 7 G for the simulation with large convective cells, and down to 2 G for the smaller-scale simulation, very close to the observed value. Finally, we suggest the possibility of the reversal of the red giant’s magnetic field.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superluminal Proper Motion in the X-Ray Jet of Centaurus A 半人马座 A 的 X 射线射流中的超光速适当运动
The Astrophysical Journal Pub Date : 2024-10-17 DOI: 10.3847/1538-4357/ad73a1
David Bogensberger, Jon M Miller, Richard Mushotzky, W. N. Brandt, Elias Kammoun, Abderahmen Zoghbi and Ehud Behar
{"title":"Superluminal Proper Motion in the X-Ray Jet of Centaurus A","authors":"David Bogensberger, Jon M Miller, Richard Mushotzky, W. N. Brandt, Elias Kammoun, Abderahmen Zoghbi and Ehud Behar","doi":"10.3847/1538-4357/ad73a1","DOIUrl":"https://doi.org/10.3847/1538-4357/ad73a1","url":null,"abstract":"The structure of the jet in Cen A is likely better revealed in X-rays than in the radio band, which is usually used to investigate jet proper motions. In this paper, we analyze Chandra Advanced CCD Imaging Spectrometer observations of Cen A from 2000 to 2022 and develop an algorithm for systematically fitting the proper motions of its X-ray jet knots. Most of the knots had an apparent proper motion below the detection limit. However, one knot at a transverse distance of 520 pc had an apparent superluminal proper motion of 2.7 ± 0.4c. This constrains the inclination of the jet to be i < 41° ± 6° and the velocity of this knot to be β > 0.94 ± 0.02. This agrees well with the inclination measured in the inner jet by the Event Horizon Telescope but contradicts previous estimates based on jet and counterjet brightness. It also disagrees with the proper motion of the corresponding radio knot, of 0.8 ± 0.1c, which further indicates that the X-ray and radio bands trace distinct structures in the jet. There are four prominent X-ray jet knots closer to the nucleus, but only one of these is inconsistent with being stationary. A few jet knots also have a significant proper-motion component in the nonradial direction. This component is typically larger closer to the center of the jet. We also detect brightness and morphology variations at a transverse distance of 100 pc from the nucleus.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信