npj Spintronics最新文献

筛选
英文 中文
Electrical engineering of topological magnetism in two-dimensional heterobilayers 二维异质薄膜中拓扑磁性的电气工程
npj Spintronics Pub Date : 2024-05-09 DOI: 10.1038/s44306-024-00015-6
Nihad Abuawwad, Manuel dos Santos Dias, Hazem Abusara, Samir Lounis
{"title":"Electrical engineering of topological magnetism in two-dimensional heterobilayers","authors":"Nihad Abuawwad, Manuel dos Santos Dias, Hazem Abusara, Samir Lounis","doi":"10.1038/s44306-024-00015-6","DOIUrl":"10.1038/s44306-024-00015-6","url":null,"abstract":"The emergence of topological magnetism in two-dimensional (2D) van der Waals (vdW) magnetic materials and their heterostructures is an essential ingredient for next-generation information technology devices. Here, we demonstrate the all-electric switching of the topological nature of individual magnetic objects emerging in 2D vdW heterobilayers. We show from the first principles that an external electric field modifies the vdW gap between CrTe2 and (Rh, Ti)Te2 layers and alters the underlying magnetic interactions. This enables switching between ferromagnetic skyrmions and meron pairs in the CrTe2/RhTe2 heterobilayer while it enhances the stability of frustrated antiferromagnetic merons in the CrTe2/TiTe2 heterobilayer. We envision that the electrical engineering of distinct topological magnetic solitons in a single device could pave the way for novel energy-efficient mechanisms to store and transmit information with applications in spintronics.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00015-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnon-photon coupling in an opto-electro-magnonic oscillator 光电磁振荡器中的磁子-光子耦合
npj Spintronics Pub Date : 2024-05-03 DOI: 10.1038/s44306-024-00012-9
Yuzan Xiong, Jayakrishnan M. P. Nair, Andrew Christy, James F. Cahoon, Amin Pishehvar, Xufeng Zhang, Benedetta Flebus, Wei Zhang
{"title":"Magnon-photon coupling in an opto-electro-magnonic oscillator","authors":"Yuzan Xiong, Jayakrishnan M. P. Nair, Andrew Christy, James F. Cahoon, Amin Pishehvar, Xufeng Zhang, Benedetta Flebus, Wei Zhang","doi":"10.1038/s44306-024-00012-9","DOIUrl":"10.1038/s44306-024-00012-9","url":null,"abstract":"The opto-electronic oscillators (OEOs) hosting self-sustained oscillations by a time-delayed mechanism are of particular interest in long-haul signal transmission and processing. On the other hand, owing to their unique tunability and compatibility, magnons—as elementary excitations of spin waves—are advantageous carriers for coherent signal transduction across different platforms. In this work, we integrated an opto-electronic oscillator with a magnonic oscillator consisting of a microwave waveguide and a yttrium iron garnet sphere. We find that, in the presence of the magnetic sphere, the oscillator power spectrum exhibits sidebands flanking the fundamental OEO modes. The measured waveguide transmission reveals anti-crossing gaps, a hallmark of the coupling between the opto-electronic oscillator modes and the Walker modes of the sphere. Experimental results are well reproduced by a coupled-mode theory that accounts for nonlinear magnetostrictive interactions mediated by the magnetic sphere. Leveraging the advanced fiber-optic technologies in opto-electronics, this work lays out a new, hybrid platform for investigating long-distance coupling and nonlinearity in coherent magnonic phenomena.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00012-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuromorphic computing with spintronics 利用自旋电子学的神经形态计算
npj Spintronics Pub Date : 2024-04-29 DOI: 10.1038/s44306-024-00019-2
Christopher H. Marrows, Joseph Barker, Thomas A. Moore, Timothy Moorsom
{"title":"Neuromorphic computing with spintronics","authors":"Christopher H. Marrows, Joseph Barker, Thomas A. Moore, Timothy Moorsom","doi":"10.1038/s44306-024-00019-2","DOIUrl":"10.1038/s44306-024-00019-2","url":null,"abstract":"Spintronics and magnetic materials exhibit many physical phenomena that are promising for implementing neuromorphic computing natively in hardware. Here, we review the current state-of-the-art, focusing on the areas of spintronic synapses, neurons, and neural networks. Many current implementations are based on the paradigm of reservoir computing, where the details of the network do not need to be known but where significant post-processing is needed. Benchmarks are given where possible. We discuss the scientific and technological advances needed to bring about spintronic neuromorphic computing that could be useful to an end-user in the medium term.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00019-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140808223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin current and spin-orbit torque induced by ferromagnets 铁磁体诱导的自旋电流和自旋轨道力矩
npj Spintronics Pub Date : 2024-04-25 DOI: 10.1038/s44306-024-00010-x
Kyoung-Whan Kim, Byong-Guk Park, Kyung-Jin Lee
{"title":"Spin current and spin-orbit torque induced by ferromagnets","authors":"Kyoung-Whan Kim, Byong-Guk Park, Kyung-Jin Lee","doi":"10.1038/s44306-024-00010-x","DOIUrl":"10.1038/s44306-024-00010-x","url":null,"abstract":"Spin torque is typically classified based on how the spin current is generated and injected into a magnet for manipulation. Spin-orbit torque arises from the spin-orbit interaction in a nearby normal metal, while spin-transfer torque results from exchange interactions in another ferromagnet. Recent studies have suggested that a ferromagnet itself can also generate a spin current through spin-orbit coupling, leading to the emergence of ferromagnet-induced spin-orbit torque as another class of spin torque. This novel torque mechanism not only inherits the advantages of spin-orbit torque architectures, such as separate reading and writing paths in memory applications but also offers the flexibility to control the generated spin direction by manipulating the orientation of the ferromagnet responsible for generating the spin current. In this article, we review the phenomena related to spin currents generated by ferromagnets, explore their physical descriptions in heterostructures, and discuss several spin torque architectures based on this effect. Ferromagnet-induced spin-orbit torque not only introduces new physical consequences by combining spin-orbit and exchange interactions but also offers a promising building block in spintronics with significant potential for diverse applications.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00010-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140642061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A first-principles study of bilayer 1T''-WTe2/CrI3: a candidate topological spin filter 双层 1T''-WTe2/CrI3 的第一性原理研究:一种候选拓扑自旋滤波器
npj Spintronics Pub Date : 2024-04-15 DOI: 10.1038/s44306-023-00007-y
Daniel Staros, Brenda Rubenstein, Panchapakesan Ganesh
{"title":"A first-principles study of bilayer 1T''-WTe2/CrI3: a candidate topological spin filter","authors":"Daniel Staros, Brenda Rubenstein, Panchapakesan Ganesh","doi":"10.1038/s44306-023-00007-y","DOIUrl":"10.1038/s44306-023-00007-y","url":null,"abstract":"The ability to manipulate electronic spin channels in 2D materials is crucial for realizing next-generation spintronics. Spin filters are spintronic components that polarize spins using external electromagnetic fields or intrinsic material properties like magnetism. Recently, topological protection from backscattering has emerged as an enticing feature that can be leveraged to enhance the robustness of 2D spin filters. In this work, we propose and then characterize one of the first 2D topological spin filters: bilayer CrI3/1T’-WTe2. To do so, we use a combination of density functional theory, maximally localized Wannier functions, and quantum transport calculations to demonstrate that a terraced bilayer satisfies the principal criteria for being a topological spin filter: namely, that it is gapless, exhibits spin-polarized charge transfer from WTe2 to CrI3 that renders the bilayer metallic, and has a topological boundary which retains the edge conductance of monolayer 1T’-WTe2. In particular, we observe that small negative ferromagnetic moments are induced on the W atoms in the bilayer, and the atomic magnetic moments on the Cr are approximately 3.2 μB/Cr compared to 2.9 μB/Cr in freestanding monolayer CrI3. Subtracting the charge and spin densities of the constituent monolayers from those of the bilayer further reveals spin-orbit coupling-enhanced spin-polarized charge transfer from WTe2 to CrI3. We demonstrate that the bilayer is topologically trivial by showing that its Chern number is zero. Lastly, we show that interfacial scattering at the boundary between the terraced materials does not remove WTe2’s edge conductance. Altogether, this evidence indicates that BL 1T’-WTe2/CrI3 is gapless, magnetic, and topologically trivial, meaning that a terraced WTe2/CrI3 bilayer heterostructure in which only a portion of a WTe2 monolayer is topped with CrI3 is a promising candidate for a 2D topological spin filter. Our results further suggest that 1D chiral edge states may be realized by stacking strongly ferromagnetic monolayers, like CrI3, atop 2D nonmagnetic Weyl semimetals like 1T’-WTe2.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-023-00007-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140553062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Room temperature photosensitive ferromagnetic semiconductor using MoS2 使用 MoS2 的室温光敏铁磁半导体
npj Spintronics Pub Date : 2024-04-05 DOI: 10.1038/s44306-024-00009-4
Jingjing Lu, Yan Xu, Jingsong Cui, Peng Zhang, Chenxi Zhou, Hanuman Singh, Shuai Zhang, Long You, Jeongmin Hong
{"title":"Room temperature photosensitive ferromagnetic semiconductor using MoS2","authors":"Jingjing Lu, Yan Xu, Jingsong Cui, Peng Zhang, Chenxi Zhou, Hanuman Singh, Shuai Zhang, Long You, Jeongmin Hong","doi":"10.1038/s44306-024-00009-4","DOIUrl":"10.1038/s44306-024-00009-4","url":null,"abstract":"Two-dimensional semiconductors, including transition metal dichalcogenides (TMDs), are of interest in electronics and photonics but remain nonmagnetic in their intrinsic form. Atomic modulation using physical and chemical ways is an effective means to control the physical properties such as magnetic and electrical properties of two-dimensional materials which can be controlled by irradiation. Here we treat mechanically exfoliated MoS2 with a helium ion beam, which exhibits semiconducting and ferromagnetic ordering at room temperature, while Monte Carlo simulations and theoretical calculations confirmed that the control of nanoholes result in the presence of magnetism. In addition, the irradiation results of multilayer MoS2 show that the magnetic moment increases with the increase of 10 layers. The conductivity remains virtually unchanged before and after being treated by a helium ion beam. The treated MoS2 spintronic device displays the switch of ‘on/off” under the light, magnetic field, and/or electric field, which means 2D photosensitive ferromagnetic semiconductor functions are successfully demonstrated at room temperature.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00009-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140348871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomalous hall and skyrmion topological hall resistivity in magnetic heterostructures for the neuromorphic computing applications 用于神经形态计算应用的磁性异质结构中的反常霍尔和 Skyrmion 拓扑霍尔电阻率
npj Spintronics Pub Date : 2024-03-12 DOI: 10.1038/s44306-023-00006-z
Aijaz H. Lone, Xuecui Zou, Debasis Das, Xuanyao Fong, Gianluca Setti, Hossein Fariborzi
{"title":"Anomalous hall and skyrmion topological hall resistivity in magnetic heterostructures for the neuromorphic computing applications","authors":"Aijaz H. Lone, Xuecui Zou, Debasis Das, Xuanyao Fong, Gianluca Setti, Hossein Fariborzi","doi":"10.1038/s44306-023-00006-z","DOIUrl":"10.1038/s44306-023-00006-z","url":null,"abstract":"Topologically protected spin textures, such as magnetic skyrmions, have shown the potential for high-density data storage and energy-efficient computing applications owing to their particle-like behavior, small size, and low driving current requirements. Evaluating the writing and reading of the skyrmion’s magnetic and electrical characteristics is crucial to implementing these devices. In this paper, we present the magnetic heterostructure Hall bar device and study the anomalous Hall and topological Hall signals in these devices. Using different measurement techniques, we investigate the magnetic and electrical characteristics of the magnetic structure. We measure the skyrmion topological resistivity and the magnetic field at different temperatures. MFM imaging and micromagnetic simulations further explain the anomalous Hall and topological Hall resistivity characteristics at various magnetic fields and temperatures. The study is extended to propose a skyrmion-based synaptic device showing spin-orbit torque-controlled plasticity. The resistance states are read using the anomalous Hall measurement technique. The device integration in a neuromorphic circuit is simulated in a 3-layer feedforward artificial neural network ANN. Based on the proposed synapses, the neural network is trained and tested on the MNIST data set, where a recognition accuracy performance of about 90% is achieved. Considering the nanosecond reading/writing time scale and a good system level performance, these devices exhibit a substantial prospect for energy-efficient neuromorphic computing.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-023-00006-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140104567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal scaling between wave speed and size enables nanoscale high-performance reservoir computing based on propagating spin-waves 波速与尺寸之间的普遍缩放使基于传播自旋波的纳米级高性能存储计算成为可能
npj Spintronics Pub Date : 2024-03-01 DOI: 10.1038/s44306-024-00008-5
Satoshi Iihama, Yuya Koike, Shigemi Mizukami, Natsuhiko Yoshinaga
{"title":"Universal scaling between wave speed and size enables nanoscale high-performance reservoir computing based on propagating spin-waves","authors":"Satoshi Iihama, Yuya Koike, Shigemi Mizukami, Natsuhiko Yoshinaga","doi":"10.1038/s44306-024-00008-5","DOIUrl":"10.1038/s44306-024-00008-5","url":null,"abstract":"Physical implementation of neuromorphic computing using spintronics technology has attracted recent attention for the future energy-efficient AI at nanoscales. Reservoir computing (RC) is promising for realizing the neuromorphic computing device. By memorizing past input information and its nonlinear transformation, RC can handle sequential data and perform time-series forecasting and speech recognition. However, the current performance of spintronics RC is poor due to the lack of understanding of its mechanism. Here we demonstrate that nanoscale physical RC using propagating spin waves can achieve high computational power comparable with other state-of-art systems. We develop the theory with response functions to understand the mechanism of high performance. The theory clarifies that wave-based RC generates Volterra series of the input through delayed and nonlinear responses. The delay originates from wave propagation. We find that the scaling of system sizes with the propagation speed of spin waves plays a crucial role in achieving high performance.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00008-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnonic combinatorial memory 磁性组合记忆
npj Spintronics Pub Date : 2024-02-14 DOI: 10.1038/s44306-023-00005-0
Mykhaylo Balinskyy, Alexander Khitun
{"title":"Magnonic combinatorial memory","authors":"Mykhaylo Balinskyy, Alexander Khitun","doi":"10.1038/s44306-023-00005-0","DOIUrl":"10.1038/s44306-023-00005-0","url":null,"abstract":"In this work, we consider a type of magnetic memory where information is encoded into the mutual arrangement of magnets. The device is an active ring circuit comprising magnetic and electric parts connected in series. The electric part includes a broadband amplifier, phase shifters, and attenuators. The magnetic part is a mesh of magnonic waveguides with magnets placed on the waveguide junctions. There are amplitude and phase conditions for auto-oscillations to occur in the active ring circuit. The frequency(s) of the auto-oscillation and spin wave propagation path(s) in the magnetic part depends on the mutual arrangement of magnets in the mesh. The propagation path is detected with a set of power sensors. The correlation between circuit parameters and spin wave path is the basis of memory operation. The combination of input/output switches connecting electric and magnetic parts and electric phase shifters constitute the memory address. The output of the power sensors is the memory state. We present experimental data on the proof-of-the-concept experiments on the prototype with three magnets placed on top of a single-crystal yttrium iron garnet Y3Fe2(FeO4)3 (YIG) film. There are three selected places for the magnets to be placed. There is a variety of spin wave propagation paths for each configuration of magnets. The results demonstrate a robust operation with an On/Off ratio for path detection exceeding 35 dB at room temperature. The number of possible magnet arrangements scales factorially with the size of the magnetic part. The number of possible paths per one configuration scales factorial as well. It makes it possible to drastically increase the data storage density compared to conventional memory devices. Magnonic combinatorial memory with an array of 100 × 100 magnets can store all information generated by humankind. Physical limits and constraints are also discussed.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-023-00005-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139732414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-nanometer CoFeB/MgO magnetic tunnel junctions with high-retention and high-speed capabilities 具有高保持力和高速性能的单纳米 CoFeB/MgO 磁性隧道结
npj Spintronics Pub Date : 2024-01-04 DOI: 10.1038/s44306-023-00003-2
Junta Igarashi, Butsurin Jinnai, Kyota Watanabe, Takanobu Shinoda, Takuya Funatsu, Hideo Sato, Shunsuke Fukami, Hideo Ohno
{"title":"Single-nanometer CoFeB/MgO magnetic tunnel junctions with high-retention and high-speed capabilities","authors":"Junta Igarashi, Butsurin Jinnai, Kyota Watanabe, Takanobu Shinoda, Takuya Funatsu, Hideo Sato, Shunsuke Fukami, Hideo Ohno","doi":"10.1038/s44306-023-00003-2","DOIUrl":"10.1038/s44306-023-00003-2","url":null,"abstract":"Making magnetic tunnel junctions (MTJs) smaller while meeting performance requirements is critical for future electronics with spin-transfer torque magnetoresistive random access memory (STT-MRAM). However, it is challenging in the conventional MTJs using a thin CoFeB free layer capped with an MgO layer because of increasing difficulties in satisfying the required data retention and switching speed at smaller scales. Here we report single-nanometer MTJs using a free layer consisting of CoFeB/MgO multilayers, where the number of CoFeB/MgO interfaces and/or the CoFeB thicknesses are engineered to tailor device performance to applications requiring high-data retention or high-speed capability. We fabricate ultra-small MTJs down to 2.0 nm and show high data retention (over 10 years) and high-speed switching at 10 ns or below in sub-5-nm MTJs. The stack design proposed here proves that ultra-small CoFeB/MgO MTJs hold the potential for high-performance and high-density STT-MRAM.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-023-00003-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139110143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信