Zeba Khan, Dheepesh Gururajan, Sabrina Kartmann, Peter Koltay, Roland Zengerle, Zhe Shu
{"title":"Iterative printing of bulk metal and polymer for additive manufacturing of multi-layer electronic circuits","authors":"Zeba Khan, Dheepesh Gururajan, Sabrina Kartmann, Peter Koltay, Roland Zengerle, Zhe Shu","doi":"10.1038/s44334-024-00001-0","DOIUrl":"10.1038/s44334-024-00001-0","url":null,"abstract":"In pursuing advancing additive manufacturing (AM) techniques for 3D objects, this study combines AM techniques for bulk metal and polymer on a single platform for one-stop printing of multilayer 3D electronic circuits with two novel aspects. The first innovation involves the embedded integration of electronic circuits by printing low-resistance electrical traces from bulk metal into polymer channels. Cross-section grinding results reveal (92 ± 5)% occupancy of electrically conductive traces in polymer channels despite the different thermal properties of the two materials. The second aspect encompasses the possibility of printing vertical bulk metal vias up to 10 mm in height with the potential for expansion, interconnecting electrically conductive traces embedded in different layers of the 3D object. The work provides comprehensive 3D printing design guidelines for successfully integrating fully embedded electrically conductive traces and the interconnecting vertical bulk metal vias. A smooth and continuous workflow is also introduced, enabling a single-run print of functional multilayer embedded 3D electronics. The design rules and the workflow facilitate the iterative printing of two distinct materials, each defined by unique printing temperatures and techniques. Observations indicate that conductive traces using molten metal microdroplets show a 12-fold reduction in resistance compared to nanoparticle ink-based methods, meaning this technique greatly complements multi-material additive manufacturing (MM-AM). The work presents insights into the behavior of molten metal microdroplets on a polymer substrate when printed through the MM-AM process. It explores their characteristics in two scenarios: When they are deposited side-by-side to form conductive traces and when they are deposited out-of-plane to create vertical bulk metal vias. The innovative application of MM-AM to produce multilayer embedded 3D electronics with bulk metal and polymer demonstrates significant potential for realizing the fabrication of free-form 3D electronics.","PeriodicalId":501702,"journal":{"name":"npj Advanced Manufacturing","volume":" ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44334-024-00001-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}