The Journal of Physiology最新文献

筛选
英文 中文
Tilted but not down: Exercise during bed rest improves mitochondrial function in older adults. 倾斜但不倒下卧床休息期间进行锻炼可改善老年人的线粒体功能。
The Journal of Physiology Pub Date : 2024-09-18 DOI: 10.1113/jp287143
Anna E Kupraty,Bridget Coyle-Asbil
{"title":"Tilted but not down: Exercise during bed rest improves mitochondrial function in older adults.","authors":"Anna E Kupraty,Bridget Coyle-Asbil","doi":"10.1113/jp287143","DOIUrl":"https://doi.org/10.1113/jp287143","url":null,"abstract":"","PeriodicalId":501632,"journal":{"name":"The Journal of Physiology","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peripheral chemoreflex restrains skeletal muscle blood flow during exercise in participants with treated hypertension. 接受过治疗的高血压患者在运动时,外周化学反射抑制骨骼肌血流。
The Journal of Physiology Pub Date : 2024-09-14 DOI: 10.1113/jp286998
Ana Luiza C Sayegh,Michael J Plunkett,Thalia Babbage,Mathew Dawes,Julian F R Paton,James P Fisher
{"title":"Peripheral chemoreflex restrains skeletal muscle blood flow during exercise in participants with treated hypertension.","authors":"Ana Luiza C Sayegh,Michael J Plunkett,Thalia Babbage,Mathew Dawes,Julian F R Paton,James P Fisher","doi":"10.1113/jp286998","DOIUrl":"https://doi.org/10.1113/jp286998","url":null,"abstract":"We tested the hypothesis that in human hypertension, an increased tonicity/sensitivity of the peripheral chemoreflex causes a sympathetically mediated restraint of nutritive blood flow to the exercising muscles. Fourteen patients with treated hypertension (age 69 ± 11 years, 136 ± 12/80 ± 11 mmHg; mean ± SD) were studied under conditions of intravenous 0.9% saline (control) and low-dose dopamine (2 µg kg-1 min-1) to inhibit the peripheral chemoreflex, at baseline, during isocapnic hypoxic rebreathing and during rhythmic handgrip exercise (3 min, 50% maximum voluntary contraction). At baseline, dopamine did not change mean blood pressure (95 ± 10 vs. 98 ± 10 mmHg, P = 0.155) but increased brachial artery blood flow (59 ± 20 vs. 48 ± 16 ml min-1, P = 0.030) and vascular conductance (0.565 ± 0.246 vs. 0.483 ± 0.160 ml min-1 mmHg-1; P = 0.039). Dopamine attenuated the increase in mean blood pressure (∆3 ± 4 vs. ∆8 ± 6 mmHg, P = 0.007) to isocapnic hypoxic rebreathing and reduced peripheral chemoreflex sensitivity by 28 ± 37% (P = 0.044). Rhythmic handgrip exercise induced increases in brachial artery blood flow and vascular conductance (both P < 0.05 vs. rest after 45 s) that were greater with dopamine than saline (e.g. Δ76 ± 54 vs. Δ60 ± 43 ml min-1 and Δ0.730 ± 0.440 vs. Δ0.570 ± 0.424 ml min-1 mmHg-1, respectively, at 60 s; main effect of condition both P < 0.0001). Our results indicate that the peripheral chemoreflex is tonically active at rest and restrains the blood flow and vascular conductance increases to exercise in treated human hypertension. KEY POINTS: It was hypothesised that in human hypertension, an increased tonicity/sensitivity of the peripheral chemoreflex causes a sympathetically mediated restraint of nutritive blood flow to the exercising muscles. Treated patients with hypertension (n = 14) were studied under conditions of intravenous 0.9% saline (control) and low-dose dopamine (2 µg kg-1 min-1) to inhibit the peripheral chemoreflex. Low-dose dopamine reduced resting ventilation and peripheral chemoreflex sensitivity, and while mean blood pressure was unchanged, brachial artery blood flow and vascular conductance were increased. Low-dose dopamine augmented the brachial artery blood flow and vascular conductance responses to rhythmic handgrip. These findings indicate that the peripheral chemoreflex is tonically active at rest and restrains the blood flow, and vascular conductance increases to exercise in treated human hypertension.","PeriodicalId":501632,"journal":{"name":"The Journal of Physiology","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein kinase C epsilon contributes to chronic mechanoreflex sensitization in rats with heart failure. 蛋白激酶 C epsilon 对心力衰竭大鼠的慢性机械反射敏感性有促进作用。
The Journal of Physiology Pub Date : 2024-09-13 DOI: 10.1113/jp287020
Alec L E Butenas,Shannon K Parr,Joseph S Flax,Raimi J Carroll,Ashley M Baranczuk,Carl J Ade,K Sue Hageman,Timothy I Musch,Steven W Copp
{"title":"Protein kinase C epsilon contributes to chronic mechanoreflex sensitization in rats with heart failure.","authors":"Alec L E Butenas,Shannon K Parr,Joseph S Flax,Raimi J Carroll,Ashley M Baranczuk,Carl J Ade,K Sue Hageman,Timothy I Musch,Steven W Copp","doi":"10.1113/jp287020","DOIUrl":"https://doi.org/10.1113/jp287020","url":null,"abstract":"We investigated second-messenger signalling components linked to the stimulation of Gq protein-coupled receptors (e.g. thromboxane A2 and bradykinin B2 receptors) on the sensory endings of thin fibre muscle afferents in the chronic mechanoreflex sensitization in rats with myocardial infarction-induced heart failure with reduced ejection fraction (HF-rEF). We hypothesized that injection of either the inositol 1,4,5-trisphosphate (IP3) receptor antagonist xestospongin C (5 µg) or the PKCε translocation inhibitor PKCe141 (45 µg) into the arterial supply of the hindlimb would reduce the increase in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) evoked during 30 s of 1 Hz dynamic hindlimb muscle stretch in decerebrate, unanaesthetized HF-rEF rats but not sham-operated controls (SHAM). Ejection fraction was significantly reduced in HF-rEF (45 (19)%) compared to SHAM (80 (9)%; P < 0.001) rats. In HF-rEF rats (n = 3M/2F), IP3 receptor blockade had no effect on the peak ΔRSNA (pre: 99 (74)%; post: 133 (79)%; P = 0.974) or peak ΔMAP response to stretch (peak ΔMAP: pre: 32 (14) mmHg; post: 36 (21) mmHg; P = 0.719). Conversely, in another group of HF-rEF rats (n = 4M/3F), the PKCε translocation inhibitor reduced the peak ΔRSNA (pre: 110 (77)%; post: 62 (58)%; P = 0.029) and peak ΔMAP response to stretch (pre: 30 (20) mmHg; post: 17 (16) mmHg; P = 0.048). In SHAM counterparts, neither drug affected the mechanoreflex responses. Our findings highlight PKCε, but not IP3 receptors, as a significant second-messenger in the chronic mechanoreflex sensitization in HF-rEF which may play a crucial role in the exaggerated sympathetic response to exercise in this patient population. KEY POINTS: Skeletal muscle contraction results in an exaggerated reflex increase in sympathetic nerve activity in heart failure patients with reduced ejection fraction (HF-rEF) compared to healthy individuals, contributing to increased cardiovascular risk and impaired tolerance for mild exercise. The exaggerated reflex sympathetic responses in HF-rEF may be attributed to a chronic sensitization of mechanically sensitive thin fibre muscle afferents mediated, at least in part, by stimulation of Gq protein-coupled thromboxane A2 and bradykinin B2 receptors on muscle afferent sensory endings. The specific Gq protein-linked signalling mechanisms that produce the chronic mechanoreflex sensitization in HF-rEF have not been investigated but may involve inositol 1,4,5-trisphosphate (IP3) receptors and/or protein kinase C epsilon (PKCε). Here we demonstrate that PKCε, but not IP3 receptors, within the sensory endings of thin fibre muscle afferents plays a role in the sensitization of mechanically sensitive thin fibre muscle afferents in rats with HF-rEF.","PeriodicalId":501632,"journal":{"name":"The Journal of Physiology","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sodium thiosulfate treatment rescues hyperglycaemia-induced pronephros damage in zebrafish by upregulating nitric oxide signalling. 硫代硫酸钠处理通过上调一氧化氮信号来挽救斑马鱼因高血糖引起的前肾损伤。
The Journal of Physiology Pub Date : 2024-09-12 DOI: 10.1113/jp286398
Hannes Ott,Katrin Bennewitz,Xin Zhang,Mariia Prianichnikova,Carsten Sticht,Gernot Poschet,Jens Kroll
{"title":"Sodium thiosulfate treatment rescues hyperglycaemia-induced pronephros damage in zebrafish by upregulating nitric oxide signalling.","authors":"Hannes Ott,Katrin Bennewitz,Xin Zhang,Mariia Prianichnikova,Carsten Sticht,Gernot Poschet,Jens Kroll","doi":"10.1113/jp286398","DOIUrl":"https://doi.org/10.1113/jp286398","url":null,"abstract":"Sodium thiosulfate (STS) is gaining increasing attention in research for its potential therapeutic applications across a spectrum of disease processes beyond its current uses. However, the precise mechanisms of action remain incompletely understood. We investigated the efficacy of STS in treating hyperglycaemia-induced pronephros damage in zebrafish to gain further insight into the underlying mechanisms. Hyperglycaemia was induced in zebrafish by suppressing the pdx1 transcription factor, which plays a crucial role in maintaining physiological pancreatic function. STS was administered by introducing it into the medium of zebrafish larvae. The pronephros structure was analysed at 48 h post-fertilization. Metabolomic profiling and RNA sequencing were conducted on groups exposed to various experimental conditions. Our findings reveal a downregulation of nitric oxide (NO) signalling in zebrafish with a knocked-down pdx1 gene, both metabolomically and transcriptionally. Notably, treatment with STS led to a compensatory upregulation of the NO signalling, ultimately resulting in the rescue of the pronephros structure. Our study provides compelling evidence that targeting NO metabolism by the administration of STS offers a promising strategy for addressing hyperglycaemia-induced organ damage. These findings underscore the potential of STS as a promising therapeutic agent for diabetic complications and warrant further investigation of its clinical applications. KEY POINTS: Sodium thiosulfate (STS) is increasingly drawing attention in research for its potential therapeutic applications across a spectrum of disease processes. Here, we demonstrate that STS treatment rescues hyperglycaemia-induced pronephros damage in zebrafish. We identified upregulation of nitric oxide signalling as the major driver behind STS-mediated rescue. Our data suggest that STS offers a promising strategy for addressing hyperglycaemia-induced organ damage, including diabetic nephropathy.","PeriodicalId":501632,"journal":{"name":"The Journal of Physiology","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual role for pannexin 1 at synapses: regulating functional and morphological plasticity. pannexin 1 在突触中的双重作用:调节功能和形态可塑性
The Journal of Physiology Pub Date : 2024-09-12 DOI: 10.1113/jp285228
Adriana Casillas Martinez,Leigh E Wicki-Stordeur,Annika V Ariano,Leigh Anne Swayne
{"title":"Dual role for pannexin 1 at synapses: regulating functional and morphological plasticity.","authors":"Adriana Casillas Martinez,Leigh E Wicki-Stordeur,Annika V Ariano,Leigh Anne Swayne","doi":"10.1113/jp285228","DOIUrl":"https://doi.org/10.1113/jp285228","url":null,"abstract":"Pannexin 1 (PANX1) is an ion and metabolite membrane channel and scaffold protein enriched in synaptic compartments of neurons in the central nervous system. In addition to a well-established link between PANX1 and synaptic plasticity, we recently identified a role for PANX1 in the regulation of dendritic spine stability. Notably, PANX1 and its interacting proteins are linked to neurological conditions involving dendritic spine loss. Understanding the dual role of PANX1 in synaptic function and morphology may help to shed light on these links. We explore potential mechanisms, including PANX1's interactions with postsynaptic receptors and cytoskeleton regulating proteins. Finally, we contextualize PANX1's dual role within neurological diseases involving dendritic spine and synapse dysfunction.","PeriodicalId":501632,"journal":{"name":"The Journal of Physiology","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acute exercise alters brain glucose metabolism in aging and Alzheimer's disease. 急性运动会改变衰老和阿尔茨海默病的脑葡萄糖代谢。
The Journal of Physiology Pub Date : 2024-09-11 DOI: 10.1113/jp286923
Zachary D Green,Casey S John,Paul J Kueck,Anneka E Blankenship,Riley E Kemna,Chelsea N Johnson,Lauren E Yoksh,Shaun R Best,Joseph S Donald,Jonathan D Mahnken,Jeffrey M Burns,Eric D Vidoni,Jill K Morris
{"title":"Acute exercise alters brain glucose metabolism in aging and Alzheimer's disease.","authors":"Zachary D Green,Casey S John,Paul J Kueck,Anneka E Blankenship,Riley E Kemna,Chelsea N Johnson,Lauren E Yoksh,Shaun R Best,Joseph S Donald,Jonathan D Mahnken,Jeffrey M Burns,Eric D Vidoni,Jill K Morris","doi":"10.1113/jp286923","DOIUrl":"https://doi.org/10.1113/jp286923","url":null,"abstract":"There is evidence that aerobic exercise improves brain health. Benefits may be modulated by acute physiological responses to exercise, but this has not been well characterized in older or cognitively impaired adults. The randomized controlled trial 'AEROBIC' (NCT04299308) enrolled 60 older adults who were cognitively healthy (n = 30) or cognitively impaired (n = 30) to characterize the acute brain responses to moderate [45-55% heart rate reserve (HRR)] and higher (65-75% HRR) intensity acute exercise. Each participant received two fluorodeoxyglucose positron emission tomography (FDG-PET) scans, one at rest and one following acute exercise. Change in cerebral glucose metabolism from rest to exercise was the primary outcome. Blood biomarker responses were also characterized as secondary outcomes. Whole grey matter FDG-PET standardized uptake value ratio (SUVR) differed between exercise (1.045 ± 0.082) and rest (0.985 ± 0.077) across subjects [Diff = -0.060, t(58) = 13.8, P < 0.001] regardless of diagnosis. Exercise increased lactate area under the curve (AUC) [F(1,56) = 161.99, P < 0.001] more in the higher intensity group [mean difference (MD) = 97.0 ± 50.8] than the moderate intensity group (MD = 40.3 ± 27.5; t = -5.252, P < 0.001). Change in lactate AUC and FDG-PET SUVR correlated significantly (R2 = 0.179, P < 0.001). Acute exercise decreased whole grey matter cerebral glucose metabolism. This effect tracked with the systemic lactate response, suggesting that lactate may serve as a key brain fuel during exercise. Direct measurements of brain lactate metabolism in response to exercise are warranted. KEY POINTS: Acute exercise is associated with a drop in global brain glucose metabolism in both cognitively healthy older adults and those with Alzheimer's disease. Blood lactate levels increase following acute exercise. Change in brain metabolism tracks with blood lactate, suggesting it may be an important brain fuel. Acute exercise stimulates changes in brain-derived neurotrophic factor and other blood biomarkers.","PeriodicalId":501632,"journal":{"name":"The Journal of Physiology","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metformin and exercise prescription: Time for evidence-based guidance. 二甲双胍和运动处方:循证指导的时机已到。
The Journal of Physiology Pub Date : 2024-05-17 DOI: 10.1113/JP286649
Kellie Hoehing, Adrianna Keener-Denoia
{"title":"Metformin and exercise prescription: Time for evidence-based guidance.","authors":"Kellie Hoehing, Adrianna Keener-Denoia","doi":"10.1113/JP286649","DOIUrl":"https://doi.org/10.1113/JP286649","url":null,"abstract":"","PeriodicalId":501632,"journal":{"name":"The Journal of Physiology","volume":"75 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuromodulatory effects of parietal high-definition transcranial direct-current stimulation on network-level activity serving fluid intelligence. 顶叶高清晰度经颅直流电刺激对服务于流体智能的网络水平活动的神经调节作用。
The Journal of Physiology Pub Date : 2024-05-17 DOI: 10.1113/JP286004
Tara D. Erker, Yasra Arif, Jason A. John, C. Embury, Kennedy A Kress, Seth D. Springer, Hannah J. Okelberry, Kellen M McDonald, G. Picci, Alex I. Wiesman, Tony W. Wilson
{"title":"Neuromodulatory effects of parietal high-definition transcranial direct-current stimulation on network-level activity serving fluid intelligence.","authors":"Tara D. Erker, Yasra Arif, Jason A. John, C. Embury, Kennedy A Kress, Seth D. Springer, Hannah J. Okelberry, Kellen M McDonald, G. Picci, Alex I. Wiesman, Tony W. Wilson","doi":"10.1113/JP286004","DOIUrl":"https://doi.org/10.1113/JP286004","url":null,"abstract":"Fluid intelligence (Gf) involves rational thinking skills and requires the integration of information from different cortical regions to resolve novel complex problems. The effects of non-invasive brain stimulation on Gf have been studied in attempts to improve Gf, but such studies are rare and the few existing have reached conflicting conclusions. The parieto-frontal integration theory of intelligence (P-FIT) postulates that the parietal and frontal lobes play a critical role in Gf. To investigate the suggested role of parietal cortices, we applied high-definition transcranial direct current stimulation (HD-tDCS) to the left and right parietal cortices of 39 healthy adults (age 19-33 years) for 20 min in three separate sessions (left active, right active and sham). After completing the stimulation session, the participants completed a logical reasoning task based on Raven's Progressive Matrices during magnetoencephalography. Significant neural responses at the sensor level across all stimulation conditions were imaged using a beamformer. Whole-brain, spectrally constrained functional connectivity was then computed to examine the network-level activity. Behaviourally, we found that participants were significantly more accurate following left compared to right parietal stimulation. Regarding neural findings, we found significant HD-tDCS montage-related effects in brain networks thought to be critical for P-FIT, including parieto-occipital, fronto-occipital, fronto-parietal and occipito-cerebellar connectivity during task performance. In conclusion, our findings showed that left parietal stimulation improved abstract reasoning abilities relative to right parietal stimulation and support both P-FIT and the neural efficiency hypothesis. KEY POINTS: Abstract reasoning is a critical component of fluid intelligence and is known to be served by multispectral oscillatory activity in the fronto-parietal cortices. Recent studies have aimed to improve abstract reasoning abilities and fluid intelligence overall through behavioural training, but the results have been mixed. High-definition transcranial direct-current stimulation (HD-tDCS) applied to the parietal cortices modulated task performance and neural oscillations during abstract reasoning. Left parietal stimulation resulted in increased accuracy and decreased functional connectivity between occipital regions and frontal, parietal, and cerebellar regions. Future studies should investigate whether HD-tDCS alters abstract reasoning abilities in those who exhibit declines in performance, such as healthy ageing populations.","PeriodicalId":501632,"journal":{"name":"The Journal of Physiology","volume":"29 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commonality and heterogeneity of pacemaker mechanisms in the male reproductive organs 男性生殖器官起搏器机制的共性和异质性
The Journal of Physiology Pub Date : 2024-04-12 DOI: 10.1113/jp284756
Hikaru Hashitani, Mitsue Takeya, Dirk F. van Helden
{"title":"Commonality and heterogeneity of pacemaker mechanisms in the male reproductive organs","authors":"Hikaru Hashitani, Mitsue Takeya, Dirk F. van Helden","doi":"10.1113/jp284756","DOIUrl":"https://doi.org/10.1113/jp284756","url":null,"abstract":"During emission, the first phase of ejaculation, smooth muscle in organs of the male reproductive tract (MRT) vigorously contract upon sympathetic nerve excitation to expel semen consisting of sperm and seminal plasma. During inter-ejaculation phases, the epididymis, seminal vesicles and prostate undergo spontaneous phasic contractions (SPCs), this transporting and maintaining the quality of sperm and seminal plasma. Recent studies have revealed platelet-derived growth factor receptor α-expressing (PDGFRα<sup>+</sup>) subepithelial interstitial cells in seminal vesicles subserve the role of pacemaker cells that electrically drive SPCs in this organ. PDGFRα<sup>+</sup> smooth muscle cells in the epididymis also appear to function as pacemaker cells implicating PDGFRα as a potential signature molecule in MRT pacemaking. The dominant mechanism driving pacemaking in these organs is the cytosolic Ca<sup>2+</sup> oscillator. This operates through entrainment of the release-refill cycle of Ca<sup>2+</sup> stores, the released Ca<sup>2+</sup> ions opening Ca<sup>2+</sup>-activated chloride channels, including in some cases ANO1 (TMEM16A), with the resultant pacemaker potential activating L-type voltage-dependent Ca<sup>2+</sup> channels in the smooth muscle causing contraction (viz. SPCs). A second pacemaker mechanism, namely the membrane oscillator also has a role in specific cases. Further investigations into the commonality and heterogeneity of MRT pacemakers will open an avenue for understanding the pathogenesis of male infertility associated with deterioration of seminal plasma.","PeriodicalId":501632,"journal":{"name":"The Journal of Physiology","volume":"137 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network-based systematic dissection of exercise-induced inhibition of myosteatosis in older individuals 以网络为基础系统分析运动对老年人骨质疏松的抑制作用
The Journal of Physiology Pub Date : 2023-12-15 DOI: 10.1113/jp285349
Hirotaka Iijima, Fabrisia Ambrosio, Yusuke Matsui
{"title":"Network-based systematic dissection of exercise-induced inhibition of myosteatosis in older individuals","authors":"Hirotaka Iijima, Fabrisia Ambrosio, Yusuke Matsui","doi":"10.1113/jp285349","DOIUrl":"https://doi.org/10.1113/jp285349","url":null,"abstract":"<div>Accumulated fat in skeletal muscle (i.e. myosteatosis), common in sedentary older individuals, compromises skeletal muscle health and function. A mechanistic understanding of how physical activity levels dictate fat accumulation represents a critical step towards establishment of therapies that promote healthy ageing. Using a network medicine paradigm that characterized the transcriptomic response of aged muscle to exercise <i>versus</i> immobilization protocols, this study explored the shared molecular cascade that regulates the fate of fibro-adipogenic progenitors (FAPs), the cell population primarily responsible for fat accumulation. Specifically, gene set enrichment analyses with network propagation revealed <i>Pgc-1α</i> as a functional hub of a large gene regulatory network underlying the regulation of FAPs by physical activity in aged muscle, but not in young counterparts. Integrated <i>in silico</i> and <i>in situ</i> approaches to induce <i>Pgc-1α</i> overexpression in aged muscle promoted mitochondrial fatty acid oxidation and inhibited FAP adipogenesis. These findings suggest that the <i>Pgc-1α</i>–mitochondrial fatty acid oxidation axis is a shared mechanism by which physical activity regulates age-related myosteatosis. The network medicine paradigm introduced provides mechanistic insight into exercise adaptation in elderly skeletal muscle and offers translational opportunities to advance exercise prescription for older populations. <figure>\u0000<div><picture>\u0000<source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/8a0e6b81-4d6a-4f3b-961c-a24bafbb1991/tjp15847-gra-0001-m.jpg\"/><img alt=\"image\" data-lg-src=\"/cms/asset/8a0e6b81-4d6a-4f3b-961c-a24bafbb1991/tjp15847-gra-0001-m.jpg\" loading=\"lazy\" src=\"/cms/asset/51a30ac7-1520-4fa5-b45a-346229b1ff2e/tjp15847-gra-0001-m.png\" title=\"image\"/></picture><p></p>\u0000</div>\u0000</figure>\u0000</div>","PeriodicalId":501632,"journal":{"name":"The Journal of Physiology","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138685750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信