Journal of Machine Learning Research最新文献

筛选
英文 中文
RNN-Attention Based Deep Learning for Solving Inverse Boundary Problems in Nonlinear Marshak Waves 基于rnn -注意力的深度学习求解非线性马沙克波反边界问题
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2023-04-01 DOI: 10.4208/jml.221209
Di Zhao, Weiming Li, Wengu Chen, Peng Song, and Han Wang null
{"title":"RNN-Attention Based Deep Learning for Solving Inverse Boundary Problems in Nonlinear Marshak Waves","authors":"Di Zhao, Weiming Li, Wengu Chen, Peng Song, and Han Wang null","doi":"10.4208/jml.221209","DOIUrl":"https://doi.org/10.4208/jml.221209","url":null,"abstract":". Radiative transfer, described by the radiative transfer equation (RTE), is one of the dominant energy exchange processes in the inertial confinement fusion (ICF) experiments. The Marshak wave problem is an important benchmark for time-dependent RTE. In this work, we present a neural network architecture termed RNN-attention deep learning (RADL) as a surrogate model to solve the inverse boundary problem of the nonlinear Marshak wave in a data-driven fashion. We train the surrogate model by numerical simulation data of the forward problem, and then solve the inverse problem by minimizing the distance between the target solution and the surrogate predicted solution concerning the boundary condition. This minimization is made efficient because the surrogate model by-passes the expensive numerical solution, and the model is differentiable so the gradient-based optimization algorithms are adopted. The effectiveness of our approach is demonstrated by solving the inverse boundary problems of the Marshak wave benchmark in two case studies: where the transport process is modeled by RTE and where it is modeled by its nonlinear diffusion approximation (DA). Last but not least, the importance of using both the RNN and the factor-attention blocks in the RADL model is illustrated, and the data efficiency of our model is investigated in this work.","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"75 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74640699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inference for Gaussian Processes with Matérn Covariogram on Compact Riemannian Manifolds. 紧凑黎曼曼形上具有马特恩协方差的高斯过程推理
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2023-03-01
Didong Li, Wenpin Tang, Sudipto Banerjee
{"title":"Inference for Gaussian Processes with Matérn Covariogram on Compact Riemannian Manifolds.","authors":"Didong Li, Wenpin Tang, Sudipto Banerjee","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Gaussian processes are widely employed as versatile modelling and predictive tools in spatial statistics, functional data analysis, computer modelling and diverse applications of machine learning. They have been widely studied over Euclidean spaces, where they are specified using covariance functions or covariograms for modelling complex dependencies. There is a growing literature on Gaussian processes over Riemannian manifolds in order to develop richer and more flexible inferential frameworks for non-Euclidean data. While numerical approximations through graph representations have been well studied for the Matérn covariogram and heat kernel, the behaviour of asymptotic inference on the parameters of the covariogram has received relatively scant attention. We focus on asymptotic behaviour for Gaussian processes constructed over compact Riemannian manifolds. Building upon a recently introduced Matérn covariogram on a compact Riemannian manifold, we employ formal notions and conditions for the equivalence of two Matérn Gaussian random measures on compact manifolds to derive the parameter that is identifiable, also known as the microergodic parameter, and formally establish the consistency of the maximum likelihood estimate and the asymptotic optimality of the best linear unbiased predictor. The circle is studied as a specific example of compact Riemannian manifolds with numerical experiments to illustrate and corroborate the theory.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9876354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Data Selection. 贝叶斯数据选择。
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2023-01-01
Eli N Weinstein, Jeffrey W Miller
{"title":"Bayesian Data Selection.","authors":"Eli N Weinstein,&nbsp;Jeffrey W Miller","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Insights into complex, high-dimensional data can be obtained by discovering features of the data that match or do not match a model of interest. To formalize this task, we introduce the \"data selection\" problem: finding a lower-dimensional statistic-such as a subset of variables-that is well fit by a given parametric model of interest. A fully Bayesian approach to data selection would be to parametrically model the value of the statistic, nonparametrically model the remaining \"background\" components of the data, and perform standard Bayesian model selection for the choice of statistic. However, fitting a nonparametric model to high-dimensional data tends to be highly inefficient, statistically and computationally. We propose a novel score for performing data selection, the \"Stein volume criterion (SVC)\", that does not require fitting a nonparametric model. The SVC takes the form of a generalized marginal likelihood with a kernelized Stein discrepancy in place of the Kullback-Leibler divergence. We prove that the SVC is consistent for data selection, and establish consistency and asymptotic normality of the corresponding generalized posterior on parameters. We apply the SVC to the analysis of single-cell RNA sequencing data sets using probabilistic principal components analysis and a spin glass model of gene regulation.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 23","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10194814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9574086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inference for a Large Directed Acyclic Graph with Unspecified Interventions. 具有未指定干预的大有向非循环图的推理。
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2023-01-01
Chunlin Li, Xiaotong Shen, Wei Pan
{"title":"Inference for a Large Directed Acyclic Graph with Unspecified Interventions.","authors":"Chunlin Li, Xiaotong Shen, Wei Pan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Statistical inference of directed relations given some unspecified interventions (i.e., the intervention targets are unknown) is challenging. In this article, we test hypothesized directed relations with unspecified interventions. First, we derive conditions to yield an identifiable model. Unlike classical inference, testing directed relations requires to identify the ancestors and relevant interventions of hypothesis-specific primary variables. To this end, we propose a peeling algorithm based on nodewise regressions to establish a topological order of primary variables. Moreover, we prove that the peeling algorithm yields a consistent estimator in low-order polynomial time. Second, we propose a likelihood ratio test integrated with a data perturbation scheme to account for the uncertainty of identifying ancestors and interventions. Also, we show that the distribution of a data perturbation test statistic converges to the target distribution. Numerical examples demonstrate the utility and effectiveness of the proposed methods, including an application to infer gene regulatory networks. The R implementation is available at https://github.com/chunlinli/intdag.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497226/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10242964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fair Data Representation for Machine Learning at the Pareto Frontier. 帕累托前沿机器学习的公平数据表示
IF 4.3 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2023-01-01
Shizhou Xu, Thomas Strohmer
{"title":"Fair Data Representation for Machine Learning at the Pareto Frontier.","authors":"Shizhou Xu, Thomas Strohmer","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>As machine learning powered decision-making becomes increasingly important in our daily lives, it is imperative to strive for fairness in the underlying data processing. We propose a pre-processing algorithm for fair data representation via which <math> <mrow><msup><mi>L</mi> <mn>2</mn></msup> <mo>(</mo> <mtext>ℙ</mtext> <mo>)</mo></mrow> </math> -objective supervised learning results in estimations of the Pareto frontier between prediction error and statistical disparity. Particularly, the present work applies the optimal affine transport to approach the post-processing Wasserstein barycenter characterization of the optimal fair <math> <mrow><msup><mi>L</mi> <mn>2</mn></msup> </mrow> </math> -objective supervised learning via a pre-processing data deformation. Furthermore, we show that the Wasserstein geodesics from learning outcome marginals to their barycenter characterizes the Pareto frontier between <math> <mrow><msup><mi>L</mi> <mn>2</mn></msup> </mrow> </math> -loss and total Wasserstein distance among the marginals. Numerical simulations underscore the advantages: (1) the pre-processing step is compositive with arbitrary conditional expectation estimation supervised learning methods and unseen data; (2) the fair representation protects the sensitive information by limiting the inference capability of the remaining data with respect to the sensitive data; (3) the optimal affine maps are computationally efficient even for high-dimensional data.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimax Estimation for Personalized Federated Learning: An Alternative between FedAvg and Local Training? 个性化联合学习的最小估计:FedAvg 和本地训练之间的替代方案?
IF 4.3 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2023-01-01
Shuxiao Chen, Qinqing Zheng, Qi Long, Weijie J Su
{"title":"Minimax Estimation for Personalized Federated Learning: An Alternative between FedAvg and Local Training?","authors":"Shuxiao Chen, Qinqing Zheng, Qi Long, Weijie J Su","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>A widely recognized difficulty in federated learning arises from the statistical heterogeneity among clients: local datasets often originate from distinct yet not entirely unrelated probability distributions, and personalization is, therefore, necessary to achieve optimal results from each individual's perspective. In this paper, we show how the excess risks of personalized federated learning using a smooth, strongly convex loss depend on data heterogeneity from a minimax point of view, with a focus on the FedAvg algorithm (McMahan et al., 2017) and pure local training (i.e., clients solve empirical risk minimization problems on their local datasets without any communication). Our main result reveals an <i>approximate</i> alternative between these two baseline algorithms for federated learning: the former algorithm is minimax rate optimal over a collection of instances when data heterogeneity is small, whereas the latter is minimax rate optimal when data heterogeneity is large, and the threshold is sharp up to a constant. As an implication, our results show that from a worst-case point of view, a dichotomous strategy that makes a choice between the two baseline algorithms is rate-optimal. Another implication is that the popular FedAvg following by local fine tuning strategy is also minimax optimal under additional regularity conditions. Our analysis relies on a new notion of algorithmic stability that takes into account the nature of federated learning.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299893/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surrogate Assisted Semi-supervised Inference for High Dimensional Risk Prediction. 用于高维风险预测的替代物辅助半监督推理。
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2023-01-01
Jue Hou, Zijian Guo, Tianxi Cai
{"title":"Surrogate Assisted Semi-supervised Inference for High Dimensional Risk Prediction.","authors":"Jue Hou, Zijian Guo, Tianxi Cai","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Risk modeling with electronic health records (EHR) data is challenging due to no direct observations of the disease outcome and the high-dimensional predictors. In this paper, we develop a surrogate assisted semi-supervised learning approach, leveraging small labeled data with annotated outcomes and extensive unlabeled data of outcome surrogates and high-dimensional predictors. We propose to impute the unobserved outcomes by constructing a sparse imputation model with outcome surrogates and high-dimensional predictors. We further conduct a one-step bias correction to enable interval estimation for the risk prediction. Our inference procedure is valid even if both the imputation and risk prediction models are misspecified. Our novel way of ultilizing unlabelled data enables the high-dimensional statistical inference for the challenging setting with a dense risk prediction model. We present an extensive simulation study to demonstrate the superiority of our approach compared to existing supervised methods. We apply the method to genetic risk prediction of type-2 diabetes mellitus using an EHR biobank cohort.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning Optimal Group-structured Individualized Treatment Rules with Many Treatments. 学习具有多种治疗方法的最佳小组结构个性化治疗规则
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2023-01-01
Haixu Ma, Donglin Zeng, Yufeng Liu
{"title":"Learning Optimal Group-structured Individualized Treatment Rules with Many Treatments.","authors":"Haixu Ma, Donglin Zeng, Yufeng Liu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Data driven individualized decision making problems have received a lot of attentions in recent years. In particular, decision makers aim to determine the optimal Individualized Treatment Rule (ITR) so that the expected specified outcome averaging over heterogeneous patient-specific characteristics is maximized. Many existing methods deal with binary or a moderate number of treatment arms and may not take potential treatment effect structure into account. However, the effectiveness of these methods may deteriorate when the number of treatment arms becomes large. In this article, we propose GRoup Outcome Weighted Learning (GROWL) to estimate the latent structure in the treatment space and the optimal group-structured ITRs through a single optimization. In particular, for estimating group-structured ITRs, we utilize the Reinforced Angle based Multicategory Support Vector Machines (RAMSVM) to learn group-based decision rules under the weighted angle based multi-class classification framework. Fisher consistency, the excess risk bound, and the convergence rate of the value function are established to provide a theoretical guarantee for GROWL. Extensive empirical results in simulation studies and real data analysis demonstrate that GROWL enjoys better performance than several other existing methods.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10019590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditional Distribution Function Estimation Using Neural Networks for Censored and Uncensored Data. 使用神经网络对有删减和无删减数据进行条件分布函数估计。
IF 6 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2023-01-01
Bingqing Hu, Bin Nan
{"title":"Conditional Distribution Function Estimation Using Neural Networks for Censored and Uncensored Data.","authors":"Bingqing Hu, Bin Nan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Most work in neural networks focuses on estimating the conditional mean of a continuous response variable given a set of covariates. In this article, we consider estimating the conditional distribution function using neural networks for both censored and uncensored data. The algorithm is built upon the data structure particularly constructed for the Cox regression with time-dependent covariates. Without imposing any model assumptions, we consider a loss function that is based on the full likelihood where the conditional hazard function is the only unknown nonparametric parameter, for which unconstrained optimization methods can be applied. Through simulation studies, we show that the proposed method possesses desirable performance, whereas the partial likelihood method and the traditional neural networks with <math><mrow><msub><mi>L</mi><mn>2</mn></msub></mrow></math> loss yields biased estimates when model assumptions are violated. We further illustrate the proposed method with several real-world data sets. The implementation of the proposed methods is made available at https://github.com/bingqing0729/NNCDE.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Consistent Second-Order Conic Integer Programming for Learning Bayesian Networks. 学习贝叶斯网络的一致二阶圆锥整数编程
IF 4.3 3区 计算机科学
Journal of Machine Learning Research Pub Date : 2023-01-01
Simge Küçükyavuz, Ali Shojaie, Hasan Manzour, Linchuan Wei, Hao-Hsiang Wu
{"title":"Consistent Second-Order Conic Integer Programming for Learning Bayesian Networks.","authors":"Simge Küçükyavuz, Ali Shojaie, Hasan Manzour, Linchuan Wei, Hao-Hsiang Wu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Bayesian Networks (BNs) represent conditional probability relations among a set of random variables (nodes) in the form of a directed acyclic graph (DAG), and have found diverse applications in knowledge discovery. We study the problem of learning the sparse DAG structure of a BN from continuous observational data. The central problem can be modeled as a mixed-integer program with an objective function composed of a convex quadratic loss function and a regularization penalty subject to linear constraints. The optimal solution to this mathematical program is known to have desirable statistical properties under certain conditions. However, the state-of-the-art optimization solvers are not able to obtain provably optimal solutions to the existing mathematical formulations for medium-size problems within reasonable computational times. To address this difficulty, we tackle the problem from both computational and statistical perspectives. On the one hand, we propose a concrete early stopping criterion to terminate the branch-and-bound process in order to obtain a near-optimal solution to the mixed-integer program, and establish the consistency of this approximate solution. On the other hand, we improve the existing formulations by replacing the linear \"big- <math><mi>M</mi></math> \" constraints that represent the relationship between the continuous and binary indicator variables with second-order conic constraints. Our numerical results demonstrate the effectiveness of the proposed approaches.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信