bioRxiv - Neuroscience最新文献

筛选
英文 中文
The role of TRPV4 in acute sleep deprivation-induced fear memory impairment TRPV4 在急性睡眠剥夺诱发的恐惧记忆损伤中的作用
bioRxiv - Neuroscience Pub Date : 2024-08-12 DOI: 10.1101/2024.08.12.607531
Meimei Guo, Feiyang Zhang, Sha Liu, Yi Zhang, Lesheng Wang, Jian Song, Wei Wei, Xiang Li
{"title":"The role of TRPV4 in acute sleep deprivation-induced fear memory impairment","authors":"Meimei Guo, Feiyang Zhang, Sha Liu, Yi Zhang, Lesheng Wang, Jian Song, Wei Wei, Xiang Li","doi":"10.1101/2024.08.12.607531","DOIUrl":"https://doi.org/10.1101/2024.08.12.607531","url":null,"abstract":"Acute sleep deprivation (ASD) negatively impacts fear memory, but the underlying mechanisms are not fully understood. Transient receptor potential vanilloid 4 (TRPV4), a cation channel which is closely correlated with the concentration of Ca2+, and neuronal Ca2+ overloading is a crucial inducement of learning and memory impairment. This study utilized an acute sleep-deprived mouse model combined with fear conditioning to investigate these mechanisms. mRNA sequencing revealed increased expression of TRPV4 in mice with ASD-induced fear memory impairment. Notably, knockdown of TRPV4 reversed ASD-induced fear memory impairment. ASD leads to the increased concentration of Ca2+. Additionally, we observed a reduction in spine density and a significant decrease in postsynaptic density protein 95 (PSD95), which is associated with synaptic plasticity, in sleep-deprived fear memory impairment mice. This indicates that ASD may cause overloaded Ca2+, disrupting synaptic plasticity and impairing fear memory. Moreover, TRPV4 knockdown significantly decreased Ca2+ concentration, mitigated the loss of dendritic spines and reduction of PSD95, contributing to the restoration of fear memory. These findings indicate a potential protective role of TRPV4 knockdown in counteracting ASD-induced fear memory deficits. Collectively, our results highlight that TRPV4 may be a potential therapeutic target in mediating fear memory impairment due to ASD and underscore the importance of sleep management for conditions like PTSD.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Electrical Stimulation and Brain-Machine Interfaces for Simultaneous Control of Wrist and Finger Flexion 同时控制手腕和手指屈伸的功能性电刺激和脑机接口
bioRxiv - Neuroscience Pub Date : 2024-08-12 DOI: 10.1101/2024.08.11.607263
Matthew J Mender, Ayobami L Ward, Luis H Cubillos, Madison M Kelberman, Joseph T Costello, Hisham Temmar, Dylan M Wallace, Edanjen T Lin, Jordan L W Lam, Matthew S Willsey, Nishant Ganesh Kumar, Theodore A Kung, Parag G Patil, Cynthia A Chestek
{"title":"Functional Electrical Stimulation and Brain-Machine Interfaces for Simultaneous Control of Wrist and Finger Flexion","authors":"Matthew J Mender, Ayobami L Ward, Luis H Cubillos, Madison M Kelberman, Joseph T Costello, Hisham Temmar, Dylan M Wallace, Edanjen T Lin, Jordan L W Lam, Matthew S Willsey, Nishant Ganesh Kumar, Theodore A Kung, Parag G Patil, Cynthia A Chestek","doi":"10.1101/2024.08.11.607263","DOIUrl":"https://doi.org/10.1101/2024.08.11.607263","url":null,"abstract":"Brain-machine interface (BMI) controlled functional electrical stimulation (FES) is a promising treatment to restore hand movements to people with cervical spinal cord injury. Recent intracortical BMIs have shown unprecedented successes in decoding user intentions, however the hand movements restored by FES have largely been limited to predetermined grasps. Restoring dexterous hand movements will require continuous control of many biomechanically linked degrees-of-freedom in the hand, such as wrist and finger flexion, that would form the basis of those movements. Here we investigate the ability to restore simultaneous wrist and finger flexion, which would enable grasping with a controlled hand posture and assist in manipulating objects once grasped. We demonstrate that intramuscular FES can enable monkeys with temporarily paralyzed hands to move their fingers and wrist across a functional range of motion, spanning an average 88.6 degrees at the metacarpophalangeal joint flexion and 71.3 degrees of wrist flexion, and intramuscular FES can control both joints simultaneously in a real-time task. Additionally, we demonstrate a monkey using an intracortical BMI to control the wrist and finger flexion in a virtual hand, both before and after the hand is temporarily paralyzed, even achieving success rates and acquisition times equivalent to able-bodied control with BMI control after temporary paralysis in two sessions. Together, this outlines a method using an artificial brain-to-body interface that could restore continuous wrist and finger movements after spinal cord injury.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delineating In-Vivo T1-Weighted Intensity Profiles Within the Human Insula Cortex Using 7-Tesla MRI 利用 7 特斯拉核磁共振成像描绘人体岛叶皮层内的活体 T1 加权强度轮廓
bioRxiv - Neuroscience Pub Date : 2024-08-12 DOI: 10.1101/2024.08.05.605123
Connor Dalby, Austin Jon Dibble, Joana Carvalheiro, Filippo Queirazza, Michele Sevegnani, Monika Harvey, Michele Svanera, Alessio Fracasso
{"title":"Delineating In-Vivo T1-Weighted Intensity Profiles Within the Human Insula Cortex Using 7-Tesla MRI","authors":"Connor Dalby, Austin Jon Dibble, Joana Carvalheiro, Filippo Queirazza, Michele Sevegnani, Monika Harvey, Michele Svanera, Alessio Fracasso","doi":"10.1101/2024.08.05.605123","DOIUrl":"https://doi.org/10.1101/2024.08.05.605123","url":null,"abstract":"The integral role of the insula cortex in sensory and cognitive function has been well documented in humans, and fine anatomical details characterising the insula have been extensively investigated ex-vivo in both human and non-human primates. However, in-vivo studies of insula anatomy in humans (in general), and within-insula parcellation (in particular) have been limited. The current study leverages 7 tesla magnetic resonance imaging to delineate T1-weighted intensity profiles within the human cortex, serving as an indirect proxy of myelination. Our analysis revealed two separate clusters of relatively high and low T1-weighted signal intensity across the insula cortex located in three distinct cortical locations within the posterior, anterior, and middle insula. The posterior and anterior cortical locations are characterised by elevated T1-weighted signal intensities, contrasting with lower intensity observed in the middle insular cortical location, compatible with ex-vivo studies. Importantly, the detection of the high T1-weighted anterior cluster is determined by the choice of brain atlas employed to define the insular ROI. We obtain reliable in-vivo within-insula parcellation at the individual and group levels, across two separate cohorts acquired in two separate sites (n1 = 21, Glasgow, UK; n2 = 101, Amsterdam, NL). These results reflect new insights into the insula anatomical structure, in-vivo, while highlighting the use of 7 tesla in neuroimaging. Specifically, the current study also paves the way to study within-insula parcellation at 7 tesla and above, and discusses further implications for individualised medicine approaches.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Synthesis of Reticulon-1C Lessens the Outgrowth of Injured Axons by Controlling Spastin Activity 网状纤维素-1C 的局部合成通过控制痉挛素的活性减少损伤轴突的生长
bioRxiv - Neuroscience Pub Date : 2024-08-12 DOI: 10.1101/2024.08.11.607514
Alejandro Luarte, Javiera Gallardo, Daniela Corvalan, Ankush Chakraborty, Claudio Gouveia-Roque, Francisca Bertin, Carlos Contreras, Juan Pablo Ramirez, Andre Weber, Waldo Acevedo, Werner Zuschratter, Rodrigo Herrera, Ursula Wyneken, Andrea Paula Lima, Tatiana Adasme, Antonia Figueroa, Carolina Gonzalez, Christian Gonzalez-Billault, Ulrich Hengst, Andres Couve
{"title":"Local Synthesis of Reticulon-1C Lessens the Outgrowth of Injured Axons by Controlling Spastin Activity","authors":"Alejandro Luarte, Javiera Gallardo, Daniela Corvalan, Ankush Chakraborty, Claudio Gouveia-Roque, Francisca Bertin, Carlos Contreras, Juan Pablo Ramirez, Andre Weber, Waldo Acevedo, Werner Zuschratter, Rodrigo Herrera, Ursula Wyneken, Andrea Paula Lima, Tatiana Adasme, Antonia Figueroa, Carolina Gonzalez, Christian Gonzalez-Billault, Ulrich Hengst, Andres Couve","doi":"10.1101/2024.08.11.607514","DOIUrl":"https://doi.org/10.1101/2024.08.11.607514","url":null,"abstract":"The regenerative potential of developing cortical axons following injury depends on intrinsic mechanisms, such as axon-autonomous protein synthesis, that are still not fully understood. An emerging factor in this regenerative process is the bi-directional interplay between microtubule dynamics and structural proteins of the axonal endoplasmic reticulum. Therefore, we hypothesize that locally synthesized structural proteins of the endoplasmic reticulum may regulate microtubule dynamics and the outgrowth of injured cortical axons. This hypothesis is supported by RNA data-mining, which identified Reticulon-1 as the sole ER-shaping protein consistently present in axonal transcriptomes and found it to be downregulated following cortical axon injury. Using compartmentalized microfluidic chambers, we demonstrate that local knockdown of Reticulon-1 mRNA enhances outgrowth while reducing the distal tubulin levels of injured cortical axons. Additionally, live cell imaging shows injury-induced reductions in microtubule growth rate and length, which are fully restored by axonal Reticulon-1 knockdown. Interestingly, axonal inhibition of the microtubule-severing protein Spastin fully prevents the effects of local Reticulon-1 knockdown on outgrowth and tubulin levels, while not affecting microtubule dynamics. Furthermore, we provide evidence supporting that the Reticulon-1C isoform is locally synthesized in injured axons and associates with Spastin to inhibit its severing activity. Our findings reveal a novel injury-dependent mechanism in which a locally synthesized ER-shaping protein lessens microtubule dynamics and the outgrowth of cortical axons.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Sequences Underlying Directed Turning in C. elegans 草履虫定向转弯的神经序列
bioRxiv - Neuroscience Pub Date : 2024-08-11 DOI: 10.1101/2024.08.11.607076
Talya S Kramer, Flossie K Wan, Sarah M Pugliese, Adam A Atanas, Alex W Hiser, Jinyue Luo, Eric Bueno, Steven W Flavell
{"title":"Neural Sequences Underlying Directed Turning in C. elegans","authors":"Talya S Kramer, Flossie K Wan, Sarah M Pugliese, Adam A Atanas, Alex W Hiser, Jinyue Luo, Eric Bueno, Steven W Flavell","doi":"10.1101/2024.08.11.607076","DOIUrl":"https://doi.org/10.1101/2024.08.11.607076","url":null,"abstract":"Complex behaviors like navigation rely on sequenced motor outputs that combine to generate effective movement. The brain-wide organization of the circuits that integrate sensory signals to select and execute appropriate motor sequences is not well understood. Here, we characterize the architecture of neural circuits that control C. elegans olfactory navigation. We identify error-correcting turns during navigation and use whole-brain calcium imaging and cell-specific perturbations to determine their neural underpinnings. These turns occur as motor sequences accompanied by neural sequences, in which defined neurons activate in a stereotyped order during each turn. Distinct neurons in this sequence respond to sensory cues, anticipate upcoming turn directions, and drive movement, linking key features of this sensorimotor behavior across time. The neuromodulator tyramine coordinates these sequential brain dynamics. Our results illustrate how neuromodulation can act on a defined neural architecture to generate sequential patterns of activity that link sensory cues to motor actions.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AmygdalaGo-BOLT3D: A boundary learning transformer for tracing human amygdala AmygdalaGo-BOLT3D:用于追踪人类杏仁核的边界学习转换器
bioRxiv - Neuroscience Pub Date : 2024-08-11 DOI: 10.1101/2024.08.11.607487
Bo Dong, Quan Zhou, Peng Gao, Wei Jintao, Jiale Xiao, Wei Wang, Peipeng Liang, Danhua Lin, Hongjian He, Xi-Nian Zuo
{"title":"AmygdalaGo-BOLT3D: A boundary learning transformer for tracing human amygdala","authors":"Bo Dong, Quan Zhou, Peng Gao, Wei Jintao, Jiale Xiao, Wei Wang, Peipeng Liang, Danhua Lin, Hongjian He, Xi-Nian Zuo","doi":"10.1101/2024.08.11.607487","DOIUrl":"https://doi.org/10.1101/2024.08.11.607487","url":null,"abstract":"Automated amygdala segmentation is one of the most common tasks in human neuroscience research. However, due to the small volume of the human amygdala, especially in developing brains, the precision and consistency of the segmentation results are often affected by individual differences and inconsistencies in data distribution. To address these challenges, we propose an algorithm for learning boundary contrast of 427 manually traced amygdalae in children and adolescents to generate a transformer, AmygdalaGo-BOLT3D, for automatic segmentation of human amygdala. This method focuses on the boundary to effectively address the issue of false positive recognition and inaccurate edges due to small amygdala volume. Firstly, AmygdalaGo-BOLT3D develops a basic architecture for an adaptive cooperation network with multiple granularities. Secondly, AmygdalaGo-BOLT3D builds the self-attention-based consistency module to address generalizability problems arising from individual differences and inconsistent data distributions. Third, AmygdalaGo-BOLT3D adapts the original sample-mask model for the amygdala scene, which consists of three parts, namely a lightweight volumetric feature encoder, a 3D cue encoder, and a volume mask decoder, to improve the generalized segmentation of the model. Finally, AmygdalaGo-BOLT3D implements a boundary contrastive learning framework that utilizes the interaction mechanism between a prior cue and the embedded magnetic resonance images to achieve effective integration between the two. Experimental results demonstrate that predictions of the overall structure and boundaries of the human amygdala exhibit highly improved precision and help maintain stability in multiple age groups and imaging centers. This verifies the stability and generalization of the algorithm designed for multiple tasks. AmygdalaGo-BOLT3D has been deployed for the community (GITHUB_LINK) to provide an open science foundation for its applications in population neuroscience.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation of brain-wide neural geometry during visual item recognition in monkeys 猴子在视觉项目识别过程中形成的全脑神经几何图形
bioRxiv - Neuroscience Pub Date : 2024-08-11 DOI: 10.1101/2024.08.05.604527
He Chen, Jun Kunimatsu, Tomomichi Oya, Yuri Imaizumi, Yukiko Hori, Masayuki Matsumoto, Yasuhiro Tsubo, Okihide Hikosaka, Takafumi Minamimoto, Yuji Naya, Hiroshi Yamada
{"title":"Formation of brain-wide neural geometry during visual item recognition in monkeys","authors":"He Chen, Jun Kunimatsu, Tomomichi Oya, Yuri Imaizumi, Yukiko Hori, Masayuki Matsumoto, Yasuhiro Tsubo, Okihide Hikosaka, Takafumi Minamimoto, Yuji Naya, Hiroshi Yamada","doi":"10.1101/2024.08.05.604527","DOIUrl":"https://doi.org/10.1101/2024.08.05.604527","url":null,"abstract":"Neural dynamics reflect canonical computations that relay and transform information in the brain. Previous studies have identified the neural population dynamics in many individual brain regions as a trajectory geometry in a low-dimensional neural space. However, whether these populations share particular geometric patterns across brain-wide neural populations remains unclear. Here, by mapping neural dynamics widely across temporal/frontal/limbic regions in the cortical and subcortical structures of monkeys, we show that 10 neural populations, including 2,500 neurons, propagate visual item information in a stochastic manner. We found that the visual inputs predominantly evoked rotational dynamics in the higher-order visual area, the TE and its downstream striatum tail, while curvy/straight dynamics appeared more frequently downstream in the orbitofrontal/hippocampal network. These geometric changes were not deterministic but rather stochastic according to their respective emergence rates. These results indicated that visual information propagates as a heterogeneous mixture of stochastic neural population signals in the brain.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Mechanism Underlying Successful Classification of Amnestic Mild Cognitive Impairment Using Multi-Sensory-Evoked Potentials 利用多传感器诱发电位成功划分失忆性轻度认知障碍的神经机制
bioRxiv - Neuroscience Pub Date : 2024-08-11 DOI: 10.1101/2024.08.10.607449
Lei Zhang, Malcom Binns, Ricky Chow, Rahel Rabi, Nicole D. Anderson, Jing Lu, Morris Freedman, Claude Alain
{"title":"Neural Mechanism Underlying Successful Classification of Amnestic Mild Cognitive Impairment Using Multi-Sensory-Evoked Potentials","authors":"Lei Zhang, Malcom Binns, Ricky Chow, Rahel Rabi, Nicole D. Anderson, Jing Lu, Morris Freedman, Claude Alain","doi":"10.1101/2024.08.10.607449","DOIUrl":"https://doi.org/10.1101/2024.08.10.607449","url":null,"abstract":"Introduction: The diagnosis, prognosis, and management of amnestic mild cognitive impairment (aMCI) remains challenging. Early detection of aMCI is crucial for timely interventions. Method: This study combines scalp recordings of auditory, visual, and somatosensory stimuli with a flexible and interpretable support vector machine classification pipeline to differentiate individuals diagnosed with aMCI from healthy controls. Results: Event-related potentials (ERPs) and functional connectivity (FC) matrices from each modality successfully predicted aMCI. We got optimal classification accuracy (96.1%), sensitivity (97.7%) and specificity (94.3%) when combining information from all sensory conditions than when using information from a single modality. Reduced ERP amplitude, higher FC in frontal region which predicted worse cognitive performance, and lower FC in posterior regions from delta to alpha frequency in aMCI contributed to classification.\u0000Conclusions: The results highlight the clinical potential of sensory-evoked potentials in detecting aMCI, with optimal classification using both amplitude and oscillatory-based FC measures from multiple modalities.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relative phase of distributed oscillatory dynamics implements a working memory in a simple brain 分布式振荡动力学的相对相位在简单大脑中实现了工作记忆
bioRxiv - Neuroscience Pub Date : 2024-08-11 DOI: 10.1101/2024.08.11.607402
Raymond L Dunn, Caitriona Costello, Jackson M Borchardt, Daniel Yutaka Sprague, Grace C Chiu, Julia M Miller, Noelle L'Etoile, Saul Kato
{"title":"Relative phase of distributed oscillatory dynamics implements a working memory in a simple brain","authors":"Raymond L Dunn, Caitriona Costello, Jackson M Borchardt, Daniel Yutaka Sprague, Grace C Chiu, Julia M Miller, Noelle L'Etoile, Saul Kato","doi":"10.1101/2024.08.11.607402","DOIUrl":"https://doi.org/10.1101/2024.08.11.607402","url":null,"abstract":"We report the existence of a working memory system in the nematode <em>C. elegans</em> that is employed for deferred action in a sensory-guided decision-making process. We find that the turn direction of discrete reorientations during navigation is under sensory-guided control and relies on a working memory that can persist over an intervening behavioral sequence. This memory system is implemented by the phasic interaction of two distributed oscillatory dynamical components. The interaction of oscillatory neural ensembles may be a conserved primitive of cognition across the animal kingdom.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial transcriptomic data reveals pure cell types via the mosaic hypothesis 空间转录组数据通过镶嵌假说揭示纯细胞类型
bioRxiv - Neuroscience Pub Date : 2024-08-10 DOI: 10.1101/2024.08.09.607193
Yiliu Wang, Christof Koch, Uygar Sümbül
{"title":"Spatial transcriptomic data reveals pure cell types via the mosaic hypothesis","authors":"Yiliu Wang, Christof Koch, Uygar Sümbül","doi":"10.1101/2024.08.09.607193","DOIUrl":"https://doi.org/10.1101/2024.08.09.607193","url":null,"abstract":"Neurons display remarkable diversity in their anatomical, molecular, and physiological properties. Although observed stereotypy in subsets of neurons is a pillar of neuroscience, clustering in high-dimensional feature spaces, such as those defined by single cell RNA-seq data, is often inconclusive and cells seemingly occupy continuous, rather than discrete, regions. In the retina, a layered structure, neurons of the same discrete type avoid spatial proximity with each other. While this principle, which is independent of clustering in feature space, has been a gold standard for retinal cell types, its applicability to the cortex has been only sparsely explored. Here, we provide evidence for such a mosaic hypothesis by developing a statistical point process analysis framework for spatial transcriptomic data. We demonstrate spatial avoidance across many excitatory and inhibitory neuronal types. Spatial avoidance disappears when cell types are merged, potentially offering a gold standard metric for evaluating the purity of putative cell types.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信