He Chen, Jun Kunimatsu, Tomomichi Oya, Yuri Imaizumi, Yukiko Hori, Masayuki Matsumoto, Yasuhiro Tsubo, Okihide Hikosaka, Takafumi Minamimoto, Yuji Naya, Hiroshi Yamada
{"title":"Formation of brain-wide neural geometry during visual item recognition in monkeys","authors":"He Chen, Jun Kunimatsu, Tomomichi Oya, Yuri Imaizumi, Yukiko Hori, Masayuki Matsumoto, Yasuhiro Tsubo, Okihide Hikosaka, Takafumi Minamimoto, Yuji Naya, Hiroshi Yamada","doi":"10.1101/2024.08.05.604527","DOIUrl":null,"url":null,"abstract":"Neural dynamics reflect canonical computations that relay and transform information in the brain. Previous studies have identified the neural population dynamics in many individual brain regions as a trajectory geometry in a low-dimensional neural space. However, whether these populations share particular geometric patterns across brain-wide neural populations remains unclear. Here, by mapping neural dynamics widely across temporal/frontal/limbic regions in the cortical and subcortical structures of monkeys, we show that 10 neural populations, including 2,500 neurons, propagate visual item information in a stochastic manner. We found that the visual inputs predominantly evoked rotational dynamics in the higher-order visual area, the TE and its downstream striatum tail, while curvy/straight dynamics appeared more frequently downstream in the orbitofrontal/hippocampal network. These geometric changes were not deterministic but rather stochastic according to their respective emergence rates. These results indicated that visual information propagates as a heterogeneous mixture of stochastic neural population signals in the brain.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.05.604527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neural dynamics reflect canonical computations that relay and transform information in the brain. Previous studies have identified the neural population dynamics in many individual brain regions as a trajectory geometry in a low-dimensional neural space. However, whether these populations share particular geometric patterns across brain-wide neural populations remains unclear. Here, by mapping neural dynamics widely across temporal/frontal/limbic regions in the cortical and subcortical structures of monkeys, we show that 10 neural populations, including 2,500 neurons, propagate visual item information in a stochastic manner. We found that the visual inputs predominantly evoked rotational dynamics in the higher-order visual area, the TE and its downstream striatum tail, while curvy/straight dynamics appeared more frequently downstream in the orbitofrontal/hippocampal network. These geometric changes were not deterministic but rather stochastic according to their respective emergence rates. These results indicated that visual information propagates as a heterogeneous mixture of stochastic neural population signals in the brain.