Everton Giachini Tosetto , Sigrid Neumann-Leitão , Gabriel Bittencourt Farias , Pedro Augusto Mendes de Castro Melo , Fernando de Figueiredo Porto Neto , Claire Carré , Arnaud Bertrand
{"title":"Potential bottom-up and top-down control of large microzooplankton in response to contrasting productive scenarios in the tropical southwestern Atlantic","authors":"Everton Giachini Tosetto , Sigrid Neumann-Leitão , Gabriel Bittencourt Farias , Pedro Augusto Mendes de Castro Melo , Fernando de Figueiredo Porto Neto , Claire Carré , Arnaud Bertrand","doi":"10.1016/j.jmarsys.2024.104010","DOIUrl":"10.1016/j.jmarsys.2024.104010","url":null,"abstract":"<div><p>Large microzooplankton, comprising organisms generally between 64 and 200 μm, plays a significant trophic role in marine ecosystems as primary or secondary consumers. In oligotrophic systems such as the Tropical Southwestern Atlantic, where primary production is dominated by Cyanobacteria, they provide a pivotal link between the basis of food webs and higher trophic levels. In this region, seasonal variations in circulation and continental runoff and wind mixing induce heightened phytoplankton biomass during autumn when compared to a less productive scenario observed in spring, leading to increased abundances of higher trophic levels. In order to establish the connection between primary producers and these higher trophic levels, we investigated the dynamics of large microzooplankton abundance in response to variations in phytoplankton biomass across different systems in the Tropical Southwestern Atlantic. Our findings highlight the complex interactions between bottom-up and top-down control mechanisms that shape large microzooplankton assemblages in these ecosystems. The increase in primary production was accompanied by an observable increase in the abundances of large microzooplankton organisms over the continental shelf, thereby supporting the hypothesis of bottom-up control. In contrast, offshore, in the South Equatorial Current System, a lower abundance of large microzooplankton was observed in the more productive scenario. The intricate relationships between large microzooplankton and higher trophic levels, particularly planktonic cnidarians, appear to be a key driver of these contrasting patterns. The presence of voracious gelatinous predators in the offshore systems, suggests a scenario in which top-down predation may counteract the expected bottom-up response of large microzooplankton to increased phytoplankton biomass. This indicates the importance of considering the entire trophic web when analysing the responses of large microzooplankton to changes in primary production.</p></div>","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"246 ","pages":"Article 104010"},"PeriodicalIF":2.7,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142039781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gustavo A. Thompson , Graciela N. Molinari , Martin D. Ehrlich , Maria C. Daponte
{"title":"Distribution, abundance, and reproductive stages of salps, doliolids, and chaetognaths in different water masses of the shelf and open ocean of the Southwestern Atlantic Ocean between 31° and 38° S","authors":"Gustavo A. Thompson , Graciela N. Molinari , Martin D. Ehrlich , Maria C. Daponte","doi":"10.1016/j.jmarsys.2024.104000","DOIUrl":"10.1016/j.jmarsys.2024.104000","url":null,"abstract":"<div><p>The complex distribution of gelatinous zooplankton at the shelf and open ocean of the Southwestern Atlantic Ocean (31°-38°S) was closely linked to the prevailing water masses. Species composition differed significantly between subtropical and subantarctic assemblages in both neritic and oceanic environments. Diversity was lower in neritic and Malvinas assemblages but higher to the north of the Brazil-Malvinas Confluence. The influence of the Brazil Current was evident through the dominance of warm-water species such as <em>Flaccisagitta enflata, Fl. hexaptera, Pterosagitta draco, Pseudosagitta lyra</em>, and <em>Salpa fusiformis</em>, which displayed the highest abundances and different maturity stages north of the Confluence. The cold-waters originating from subantarctic regions were indicated by the presence of <em>Ps. gazellae, Eukrhonia hamata,</em> and <em>Serratosagitta tasmanica</em>, which showed higher abundances and the co-occurrence of different maturity stages south of the Confluence. The spread of low-salinity water into oceanic stations was indicated by the presence of species such as <em>Parasagitta friderici</em> and <em>Pa. tenuis</em>, which are typically found in neritic waters with low salinity. The coexistence of typical species from both warm- and cold-waters at oceanic stations in the Confluence section reflects the complex oceanographic structure of one of the most intense open-ocean fronts in the world ocean.</p></div>","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"246 ","pages":"Article 104000"},"PeriodicalIF":2.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucas de la Maza , Evie A. Wieters , Ricardo Beldade , Mauricio F. Landaeta , Alejandro Perez-Matus , Sergio A. Navarrete
{"title":"Variability in oceanographic conditions affecting Mesophotic Ecosystems along the South Eastern Pacific: Latitudinal trends and potential for climate refugia","authors":"Lucas de la Maza , Evie A. Wieters , Ricardo Beldade , Mauricio F. Landaeta , Alejandro Perez-Matus , Sergio A. Navarrete","doi":"10.1016/j.jmarsys.2024.103999","DOIUrl":"https://doi.org/10.1016/j.jmarsys.2024.103999","url":null,"abstract":"<div><p>Oceans have been changing at the fastest pace since the beginning of the Holocene. The South Eastern Pacific (SEP), including the Humboldt Upwelling Ecosystem (HUE) is subject to changes in upwelling winds, temperature, El Niño, and the ever-increasing local anthropogenic stressors, all of which have been documented for surface coastal waters where in-situ and remote observations are readily available. Temporal and spatial changes in the adjacent deeper waters where diverse Mesophotic Ecosystems are found have been scarcely documented. These marine ecosystems have been the focus of ecological studies for less than two decades. Here we provide an overview of the thermal variability at mesophotic depths and assess their potential as climatic refugia along all SEP ecoregions. We analyzed a time series of temperature and salinity from a 19 yr reanalysis based on remote and in-situ observations (CTD, ARGO, XBTs, moorings) to quantify variability in the Tropical (0–5°S), Northern Warm Temperate (5–30°S); Southern Warm Temperate (30–39.5°S) and Magellanic subregions (39.5–45°S), at two mesophotic depth strata (50 and 100 m), and a reference surface (5 m) depth. We assessed variability in the seasonal, interannual (El Niño) and ‘long-term’ (ca. 20 yr) scales, and the relationship with wind velocities. The thermal depth gradient between surface and mesophotic depths did not change smoothly with latitude but peaked within the northern portion of the warm temperate subregion, decreasing towards lower and higher latitudes. Seasonal variation in temperature was also largest in the north and south temperate subregions and minimal in the Magellanic subregion. Depth dampening of seasonal temperature variation was also strengthened at intermediate latitudes and much reduced in the tropics, where seasonal variation at mesophotic depths was similar to that at the surface. The strong interannual El Niño events were identified at all depths in tropical and temperate subregions, with stronger standardized effects at mesophotic layers than at the surface. Long-term (ca. two decades) temperature trends were significant and changed direction from warming to cooling along the SEP but were generally patchier at mesophotic layers. Spatial temperature gradients have remained relatively stable over the past two decades and were stronger at the surface than at mesophotic depths, and stronger within the tropics than in all other subregions. Surprisingly, the velocity of climate change was patchier and generally faster at mesophotic layers than at the surface. We conclude that, judging solely by physical environmental conditions, mesophotic ecosystems may be used by species with very different temperature affinities in temperate subregions, while in the tropics, more overlap in temperature affinities of component species may be found. Importantly, while the seasonal amplitude is reduced at mesophotic depth in most subregions, except the tropics, interannual disturbances ","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"245 ","pages":"Article 103999"},"PeriodicalIF":2.7,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141542341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mesoscale and climate environmental variability drive krill community changes in the Humboldt Current System","authors":"Macarena Díaz-Astudillo , Ramiro Riquelme-Bugueño , Gonzalo S. Saldías , Jaime Letelier","doi":"10.1016/j.jmarsys.2024.103998","DOIUrl":"10.1016/j.jmarsys.2024.103998","url":null,"abstract":"<div><p>Euphausiids (or “krill”) play a crucial role in the food webs of eastern boundary upwelling systems. Their inter-specific predatory interactions with ecologically and commercially important species highlights the importance of understanding krill variability at different temporal and spatial scales. In the Humboldt Current System (HCS), few studies have addressed the spatio-temporal variability of krill communities and their link with climate and local environmental drivers. We studied the patterns and variability of euphausiid diversity in the coastal area off northern Chile, using zooplankton and CTD-O data, and satellite environmental data from the falls and springs of 2010–2017. The community showed low diversity and evenness, with the endemic species <em>Euphausia mucronata</em> being the most abundant. The environmental variance showed 2 main modes of variability: (1) upwelling-associated changes in the depth of the oxygen minimum zone (OMZ) and in temperature, and (2) interannual variability in salinity, associated with ENSO-driven water-mass changes. The diversity indices and community structure showed large fluctuations in the cross-shore direction, and with latitude. The general pattern showed higher diversity offshore and southward, with few species in the low temperature, shallow OMZ conditions of the coastal band. During the 2013 and 2016 marine heatwaves and the 2015-2016 El Niño, the Subtropical Water Mass was advected southward, causing an increase in salinity and temperature, and a decrease in total krill abundance. However, ENSO variability did not significantly affect the species composition. The changes in community structure were caused by fluctuations in species abundance rather than species presence, as the most abundant species dominated the community throughout the study period. These results indicate that the krill communities of the HCS are highly resilient to climate perturbations, with upwelling-associated gradients being the primary source of variability for euphausiid populations in this ecosystem.</p></div>","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"245 ","pages":"Article 103998"},"PeriodicalIF":2.7,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141403269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julio Poblete-Ulloa , Marcelo H. Gutiérrez , Carina B. Lange , Diego A. Narváez , Paulina Montero , Humberto E. González , Camila Fernández
{"title":"Freshwater discharge drives latitudinal changes of phytoplankton composition on the continental shelf off Chilean Patagonia","authors":"Julio Poblete-Ulloa , Marcelo H. Gutiérrez , Carina B. Lange , Diego A. Narváez , Paulina Montero , Humberto E. González , Camila Fernández","doi":"10.1016/j.jmarsys.2024.103993","DOIUrl":"10.1016/j.jmarsys.2024.103993","url":null,"abstract":"<div><p>A high-resolution survey of distribution, abundance and composition of phytoplankton was carried out for the first time in surface waters of the continental shelf off Chilean Patagonia (41–48°S). An Imaging FlowCytobot was used along the survey track to record phytoplankton in the size range of 10–120 μm during the austral spring of 2018. Phytoplankton community structure was complemented with continuous underway measurements of temperature and salinity, and physicochemical parameters of the water column at 35 oceanographic stations. Our results evidenced two main macrozones with distinctive phytoplankton assemblages delimited latitudinally at ~45°S. The northern macrozone was characterized by higher surface temperature and salinity, Si:N ratio > 1, diatoms of the genera <em>Thalassiosira</em> and <em>Chaetoceros</em>, and dinoflagellates accounting for over 70% of the total abundance. The southern macrozone, with lower surface temperature and salinity and Si:N ratio < 1, was characterized by members of the genera <em>Guinardia</em>, <em>Lauderia</em> and <em>Cerataulina</em>, representing over 60% of the total phytoplankton. These changes were attributable to the strong influence of freshwater at latitudes higher than 45°S and the enhanced discharge of meltwaters from Patagonian icefields in the area of the Taitao Peninsula and the Gulf of Penas (47–-48°S). Fresh and cold waters impacted the water column stratification and the availability of dissolved silicic acid with potential effects on phytoplankton composition and diatom cell silicification and, thus, on carbon exportation. Our estimations of phytoplankton carbon were comparable to those observed in Patagonian fjords and the highly productive upwelling ecosystem of central Chile. We suggest that the continental shelf off Patagonia can contribute significantly to strengthen the biological carbon pump through the synthesis, exportation, and sequestration of phytoplankton-based organic carbon in the southeastern Pacific Ocean.</p></div>","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"245 ","pages":"Article 103993"},"PeriodicalIF":2.8,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141412059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lijian Yang , Xiaochuan Ma , Yiwei He , Min Gao , Jie Huang , Jian Lu , Zhendong Luan
{"title":"Spatiotemporal variations in the grain size distribution in the water column and sediments from the Yellow River Delta to distal areas under coastal currents","authors":"Lijian Yang , Xiaochuan Ma , Yiwei He , Min Gao , Jie Huang , Jian Lu , Zhendong Luan","doi":"10.1016/j.jmarsys.2024.103997","DOIUrl":"https://doi.org/10.1016/j.jmarsys.2024.103997","url":null,"abstract":"<div><p>The differentiation of sediment grain size from large river deltas to distal areas in a coastal flow system and its evolution are vital because they greatly contribute to matter transport, pollution accumulation, and carbon cycling on the inner shelf. Here, the Yellow River sedimentary system in the adjacent seas is studied, including the proximal delta of the Yellow River and the distal mud patch. The grain size distributions of the suspended particulate matter (SPM), surface sediments, and core sediments in the Shandong Peninsula Coastal Current (SPCC) system were integrated and analyzed. The results show that apparent variations in the grain size distribution exist in the SPM and sediments in the SPCC system. The grain size distribution of the SPM near the proximal delta of the Yellow River is multimodal and variable with water depth, whereas that in the distal mud area is typically unimodal. The coarse-grained endmember of suspended sediments is restricted in the proximal area by ocean fronts under fair weather conditions in both summer and winter and is only transported to the distal mud area under strengthened coastal currents in winter. In contrast, fine-grained endmembers can be transported far away under tidal currents and coastal currents year-round. The temporal grain size variation near the proximal delta is also significantly affected by historical shifts in the Yellow River mouth, while the strength of coastal currents associated with the East Asian Winter Monsoon (EAWM) controls the grain size distribution in the distal mud area. The roles of river behaviors, ocean fronts, tides, and winds are all highlighted in the control of grain size differentiation. These results potentially have significance for understanding sediment dynamics and mass transport processes in similar coastal current systems involving large rivers worldwide.</p></div>","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"245 ","pages":"Article 103997"},"PeriodicalIF":2.8,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141290069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amavi N. Silva , Duncan A. Purdie , Nicholas R. Bates , Toby Tyrrell
{"title":"Investigating Labrador Sea's persistent surface O2 anomaly using observations and biogeochemical model results","authors":"Amavi N. Silva , Duncan A. Purdie , Nicholas R. Bates , Toby Tyrrell","doi":"10.1016/j.jmarsys.2024.103996","DOIUrl":"https://doi.org/10.1016/j.jmarsys.2024.103996","url":null,"abstract":"<div><p>Deviations of surface ocean dissolved oxygen (O<sub>2</sub>) from equilibrium with the atmosphere should be rectified about twenty times more quickly than deviations of dissolved carbon dioxide (CO<sub>2</sub>). Therefore, persistent O<sub>2</sub> disequilibria in the Labrador Sea, while CO<sub>2</sub> is close to equilibrium, has been a matter of interest to many previous works. Here we investigate this phenomenon by using a novel analytical technique, the ‘CORS (Carbon Dioxide and Oxygen Relative to Saturation) method’, and also by using more data than was available previously. We compare observations to results from a model we developed for the Labrador Sea which combines plankton ecology with biogeochemical cycling of oxygen, carbon and nitrogen. In contrast to earlier works which mostly considered individual factors in isolation, here we used the model, together with data, to distinguish between the varying influences of several processes potentially contributing to the long-lasting O<sub>2</sub> undersaturation: mixed layer depth, duration of mixed layer deepening, convection, entrainment and bottom water O<sub>2</sub> content. Our model experiments confirm that, for the same gas exchange rate, the effects on surface O<sub>2</sub> concentration differ significantly among the identified drivers. Our results suggest that prolonged surface O<sub>2</sub> undersaturation is not always dependent on the extreme winter mixed layer depths, but rather that even moderately deep mixed layers (e.g. 300 m), when prolonged and in conjunction with continuous entrainment of oxygen-depleted deep water, can also drive persistent surface O<sub>2</sub> anomalies. An implication of our results is that regions in the North Atlantic with maximum winter mixed layer depths of only a few hundred metres should also show persistent surface O<sub>2</sub> undersaturation. We further reveal that convection in deep water formation regions produces trendlines that do not pass through the origin of a plot of CO<sub>2</sub> vs. O<sub>2</sub> deviations which have previously been thought to indicate erroneous data.</p></div>","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"245 ","pages":"Article 103996"},"PeriodicalIF":2.8,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924796324000344/pdfft?md5=3ab28f80ed74e5e6bde616b23c18602e&pid=1-s2.0-S0924796324000344-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141303727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Li , Zhao Xu , Jie Shi , Xiaohui Ma , Jishang Xu
{"title":"A mechanism of enhanced subsurface near-inertial kinetic energy in the East China Sea associated with successive typhoons","authors":"Yang Li , Zhao Xu , Jie Shi , Xiaohui Ma , Jishang Xu","doi":"10.1016/j.jmarsys.2024.103995","DOIUrl":"10.1016/j.jmarsys.2024.103995","url":null,"abstract":"<div><p>Near-inertial waves (NIWs) play an important role in diapycnal processes and energy dissipation. A mooring observation deployed on the continental shelf in the East China Sea captured anomalously intensified subsurface near-inertial kinetic energy (NIKE) during the passage of Typhoon Danas (2013). An early study has investigated the role of Parametric Subharmonic Instability (PSI) induced by internal tides in the intensification of the subsurface intensified near-inertial velocity. However, results based on regional numerical simulations reveal that strong subsurface near-inertial velocity persists even in the absence of tidal effects, implying the existence of additional sources of NIWs. Our analyses showed that after excluding the effect of PSI, approximately 30% of the remaining subsurface NIKE can be attributed to another Typhoon Fitow (2013), which occurred a week prior to Typhoon Danas. Constrained by the Kuroshio current and the continental shelf, the NIKE generated by Typhoon Fitow propagates northward and reaches the mooring location, leading to the intensified subsurface NIW signal. Our simulation, together with the observations, suggests complicated NIW dynamics in continental shelf regions, involving interactions between successive typhoons, topography and background current, and differing from the open ocean. These interactions will further influence vertical mixing on the continental shelf along the pathway of NIW.</p></div>","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"245 ","pages":"Article 103995"},"PeriodicalIF":2.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141274258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M.S. Doldan , P.C. Zaidman , G.N. Williams , L.H. Gimenez , E.M. Morsan
{"title":"Marine environmental variability in Northern Patagonia (Southwestern Atlantic Ocean) as recorded in Glycymeris longior shells","authors":"M.S. Doldan , P.C. Zaidman , G.N. Williams , L.H. Gimenez , E.M. Morsan","doi":"10.1016/j.jmarsys.2024.103991","DOIUrl":"10.1016/j.jmarsys.2024.103991","url":null,"abstract":"<div><p>Certain marine regions in the world lack long instrumental records of environmental variables or such records are incomplete. This deficiency particularly applies to Argentine Patagonia, where existing instrumental records span only the last few decades. In the present study it was explored whether such data can be reconstructed from a natural archive, specifically shells of the bivalve mollusk <em>Glycymeris longior</em> from the San Matías Gulf, north Patagonia. For this purpose, a multidecade-long time-series was constructed using variations in the annual shell growth. The time-series spans from 1890 to 2020 and is based on shells from museum collections (live-collected from 1918, 1933 and 1945) and from scientific surveys conducted between 1989 and 2021. An analysis of the links between environmental variables and shell growth was performed between 1976 and 2020 (expressed population signal >0.85). The common signal among the growth curves of individual specimens of <em>G. longior</em> suggests that the growth is influenced by environmental parameters. However, the growth of <em>G. longior</em> did not show significant correlations with the low- nor with the high-frequency components of SST and food supply (chlorophyll-a concentration and POC), suggesting that these parameters do not limit shell growth at the studied site or were undetected with our analyses. The chronology also seems to be insensitive to regional climate patterns such as the Southern Annular Mode. The chronology has the potential for being expanded spatially and temporally.</p></div>","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"245 ","pages":"Article 103991"},"PeriodicalIF":2.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141278596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ilias Semmouri , Jonas Mortelmans , Charlie Roland , Colin R. Janssen , Jana Asselman
{"title":"Decadal trends and dynamics in the abundance and biomass of marine branchiopods in the southern part of the North Sea","authors":"Ilias Semmouri , Jonas Mortelmans , Charlie Roland , Colin R. Janssen , Jana Asselman","doi":"10.1016/j.jmarsys.2024.103992","DOIUrl":"https://doi.org/10.1016/j.jmarsys.2024.103992","url":null,"abstract":"<div><p>Time-series are fundamental for enhancing our comprehension of plankton community dynamics and forecasting future changes that could significantly affect entire marine food chains and ecosystems. In this study, we investigated spatial and temporal variations in occurrence, abundance and body size of marine branchiopods in the Belgian Part of the North Sea (BPNS), using both traditional microscopy, as well as digital imaging (ZooSCAN). We studied the population dynamics of branchiopods collected between 2014 and 2021 in the BPNS and compared these results with a previously collected (2009–2010) dataset for the same area. The time series showed no significant changes in abundance (<em>Podon</em> spp., <em>Evadne nordmanni</em>) over the years, but we did observe a pronounced seasonal pattern, with both species completely absent in the winter months. Abundance and biomass were positively correlated with water temperature but negatively correlated with nutrient concentrations and turbidity. Additionally, <em>Podon</em> spp. abundance was negatively correlated with anthropogenic chemicals (i.e., polycyclic aromatic hydrocarbons). We employed generalized additive models to quantify the relative contribution of temperature, salinity, turbidity, chlorophyll <em>a</em> concentration and pollutant levels to the dynamics of the studied taxa. Turbidity and chlorophyll <em>a</em> concentrations were revealed to be the predictor with the highest importance in all models predicting the abundances/body size of the selected species. Anthropogenic chemicals were not informative in explaining branchiopod abundance or body size. The findings of this study establish a baseline for future studies, which is essential for our understanding of the zooplankton dynamics in the North Sea, particularly in the context of climate change and changing water quality.</p></div>","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"245 ","pages":"Article 103992"},"PeriodicalIF":2.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}