Quantum FrontiersPub Date : 2024-02-28DOI: 10.1007/s44214-024-00052-6
{"title":"Experimental test of the entanglement enhancement in two-photon fluorescence","authors":"","doi":"10.1007/s44214-024-00052-6","DOIUrl":"https://doi.org/10.1007/s44214-024-00052-6","url":null,"abstract":"<h3>Abstract</h3> <p>Entangled photons with time-energy correlations are predicted to have improved sensitivity compared with classical light in two-photon fluorescence, which is promising for lowering the phototoxicity in biomedical imaging. While the mechanism has been demonstrated in atoms and crystals, the effectiveness in biological molecules has been under debate. Here we report the experimental results, including both positive and negative ones, in various samples. While entanglement induced enhancement in the sum frequency generation of a nonlinear crystal was confirmed, we observe no such enhancement in the two-photon nonlinear process of various molecules. However, we observed classical two-photon fluorescence excited by nW light in rare earth element doped core-shell structure nano-crystals, which can also be used in sensitive biomedical imaging. Our results provide guidance in characterizing the effect of entanglement in two-photon processes.</p>","PeriodicalId":501227,"journal":{"name":"Quantum Frontiers","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum FrontiersPub Date : 2024-02-26DOI: 10.1007/s44214-024-00051-7
Min Zhuang, Sijie Chen, Jiahao Huang, Chaohong Lee
{"title":"Quantum lock-in measurement of weak alternating signals","authors":"Min Zhuang, Sijie Chen, Jiahao Huang, Chaohong Lee","doi":"10.1007/s44214-024-00051-7","DOIUrl":"https://doi.org/10.1007/s44214-024-00051-7","url":null,"abstract":"<p>The detection of weak time-dependent alternating signals in a strongly noisy background is an important problem in physics and a critical task in metrology. Quantum lock-in amplifier can extract alternating signals within extreme noises by using suitable quantum resources, which has been widely used for magnetic field sensing, vector light shift detection, and force detection. In particular, entanglement-enhanced quantum lock-in amplifier can be realized via many-body quantum interferometry. The many-body lock-in measurement provides a feasible way to achieve high-precision detection of alternating signals, even in noisy environments. In this article, we review general protocol, experiment progresses and potential applications of quantum lock-in measurements.</p>","PeriodicalId":501227,"journal":{"name":"Quantum Frontiers","volume":"2016 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139981246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graphene nanoribbons: current status, challenges and opportunities","authors":"Shuo Lou, Bosai Lyu, Xianliang Zhou, Peiyue Shen, Jiajun Chen, Zhiwen Shi","doi":"10.1007/s44214-024-00050-8","DOIUrl":"https://doi.org/10.1007/s44214-024-00050-8","url":null,"abstract":"<p>Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the excellent properties of graphene, while also exhibiting unique physical characteristics not found in graphene, such as an adjustable band gap and spin-polarized edge states. These properties make GNRs an appealing candidate for carbon-based electronics. In this review, we begin by introducing the edge geometry and electronic bands of GNRs. We then discuss various methods for fabricating GNRs and analyze the characteristics of each method. Subsequently, the performance of GNR field-effect transistor devices obtained from a few representative GNR fabrication methods is discussed and compared. We also investigate the use of GNRs as quantum dots and spintronic devices. Finally, the challenges and opportunities of GNRs as a quantum material for next-generation electronics and spintronics are explored and proposed.</p>","PeriodicalId":501227,"journal":{"name":"Quantum Frontiers","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139909928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum FrontiersPub Date : 2024-02-08DOI: 10.1007/s44214-024-00049-1
Ju Liu, Yaoyao Xu, Huaqing Luo, Lushuai Cao, Minkang Zhou, Xiaochun Duan, Zhongkun Hu
{"title":"Test of the gravitational redshift with single-photon-based atomic clock interferometers","authors":"Ju Liu, Yaoyao Xu, Huaqing Luo, Lushuai Cao, Minkang Zhou, Xiaochun Duan, Zhongkun Hu","doi":"10.1007/s44214-024-00049-1","DOIUrl":"https://doi.org/10.1007/s44214-024-00049-1","url":null,"abstract":"<p>The gravitational redshift (GR), as predicted by Einstein’s general theory of relativity, posits that two identical clocks situated at different gravitational potentials will tick at different rates. In this study, we explore the impact of the GR on a single-photon-based atom interferometer and propose a corresponding testing scheme. Our approach conceptualizes the atom interferometer as two coherent atomic clocks positioned at distinct elevations, which is referred to as an atomic clock interferometer, allowing us to derive the GR-induced phase shift. This effect becomes significant due to the notable energy difference between the two atomic internal states, comparable to other relativistic effects in single-photon-based atomic clock interferometers. Furthermore, our proposed scheme incorporates the velocity of the laser device to effectively mitigate other relativistic effects. The ensuing analysis indicates an anticipated GR test precision at the 10<sup>−5</sup> level for our proposed approach.</p>","PeriodicalId":501227,"journal":{"name":"Quantum Frontiers","volume":"22 3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139752129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum FrontiersPub Date : 2024-01-08DOI: 10.1007/s44214-023-00048-8
Kehang Zhu, Zhiping Yang, Qing-Dong Jiang, Zihua Chai, Zhijie Li, Zhiyuan Zhao, Ya Wang, Fazhan Shi, Chang-Kui Duan, Xing Rong
{"title":"Experimental sensing quantum atmosphere of a single spin","authors":"Kehang Zhu, Zhiping Yang, Qing-Dong Jiang, Zihua Chai, Zhijie Li, Zhiyuan Zhao, Ya Wang, Fazhan Shi, Chang-Kui Duan, Xing Rong","doi":"10.1007/s44214-023-00048-8","DOIUrl":"https://doi.org/10.1007/s44214-023-00048-8","url":null,"abstract":"<p>Understanding symmetry-breaking states of materials is a major challenge in the modern physical sciences. Quantum atmosphere proposed recently sheds light on the hidden world of these symmetry broken patterns. Yet, no experiment has been performed to demonstrate its potential. In our experiment, we prepare time-reversal-symmetry conserved and broken quantum atmosphere of a single nuclear spin and successfully observe their symmetry properties. Our work proves in principle that finding symmetry patterns from quantum atmosphere is conceptually viable. It also opens up entirely new possibilities in the potential application of quantum sensing in material diagnosis.</p>","PeriodicalId":501227,"journal":{"name":"Quantum Frontiers","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139397219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum FrontiersPub Date : 2023-12-04DOI: 10.1007/s44214-023-00041-1
Zefeng Cai, Ke Wang, Yong Xu, Su-Huai Wei, Ben Xu
{"title":"A self-adaptive first-principles approach for magnetic excited states","authors":"Zefeng Cai, Ke Wang, Yong Xu, Su-Huai Wei, Ben Xu","doi":"10.1007/s44214-023-00041-1","DOIUrl":"https://doi.org/10.1007/s44214-023-00041-1","url":null,"abstract":"<p>The profound impact of excited magnetic states on the intricate interplay between electron and lattice behaviors in magnetic materials is a topic of great interest. Unfortunately, despite the significant strides that have been made in first-principles methods, accurately tracking these phenomena remains a challenging and elusive task. The crux of the challenge that lies before us is centered on the intricate task of characterizing the magnetic configuration of an excited state, utilizing a first-principle approach that is firmly rooted in the ground state of the system. We propose a versatile self-adaptive spin-constrained density functional theory formalism. By iteratively optimizing the constraining field alongside the electron wave function during energy minimization, we are able to obtain an accurate potential energy surface that captures the longitudinal and transverse variations of magnetization in itinerant ferromagnetic Fe. Moreover, this technique allows us to identify the subtle coupling between magnetic moments and other degrees of freedom by tracking energy variation, providing new insights into the intricate interplay between magnetic interactions, electronic band structure, and phonon dispersion curves in single-layered <span>(mathrm{CrI} _{3})</span>. This new methodology represents a significant breakthrough in our ability to probe the complex and multifaceted properties of magnetic systems.</p>","PeriodicalId":501227,"journal":{"name":"Quantum Frontiers","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138511668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum FrontiersPub Date : 2023-12-04DOI: 10.1007/s44214-023-00046-w
Guang-Qi Zhao, Shuai Li, W. B. Rui, C. M. Wang, Hai-Zhou Lu, X. C. Xie
{"title":"3D quantum Hall effect in a topological nodal-ring semimetal","authors":"Guang-Qi Zhao, Shuai Li, W. B. Rui, C. M. Wang, Hai-Zhou Lu, X. C. Xie","doi":"10.1007/s44214-023-00046-w","DOIUrl":"https://doi.org/10.1007/s44214-023-00046-w","url":null,"abstract":"<p>A quantized Hall conductance (not conductivity) in three dimensions has been searched for more than 30 years. Here we explore it in 3D topological nodal-ring semimetals, by employing a minimal model describing the essential physics. In particular, the bulk topology can be captured by a momentum-dependent winding number, which confines the drumhead surface states in a specific momentum region. This confinement leads to a surface quantum Hall conductance in a specific energy window in this 3D system. The winding number for the drumhead surface states and Chern number for their quantum Hall effect form a two-fold topological hierarchy. We demonstrate the one-to-one correspondence between the momentum-dependent winding number and wavefunction of the drumhead surface states. More importantly, we stress that breaking chiral symmetry is necessary for the quantum Hall effect of the drumhead surface states. The analytic theory can be verified numerically by the Kubo formula for the Hall conductance. We propose an experimental setup to distinguish the surface and bulk quantum Hall effects. The theory will be useful for ongoing explorations on nodal-ring semimetals.</p>","PeriodicalId":501227,"journal":{"name":"Quantum Frontiers","volume":"39 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138511669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum FrontiersPub Date : 2023-11-29DOI: 10.1007/s44214-023-00045-x
Shichen Zhang, Ke Bian, Ying Jiang
{"title":"Perspective: nanoscale electric sensing and imaging based on quantum sensors","authors":"Shichen Zhang, Ke Bian, Ying Jiang","doi":"10.1007/s44214-023-00045-x","DOIUrl":"https://doi.org/10.1007/s44214-023-00045-x","url":null,"abstract":"<p>There is a rich of electric phenomena ubiquitously existing in novel quantum materials and advanced electronic devices. Microscopic understanding of the underlying physics relies on the sensitive and quantitative measurements of the electric field, electric current, electric potential, and other related physical quantities with a spatial resolution down to nanometers. Combined with a scanning probe microscope (SPM), the emergent quantum sensors of atomic/nanometer size provide promising platforms for imaging various electric parameters with a sensitivity beyond a single electron/charge. In this perspective, we introduce the working principle of such newly developed technologies, which are based on the strong sensitivity of quantum systems to external disturbances. Then we review the recent applications of those quantum sensors in nanoscale electric sensing and imaging, including a discussion of their privileges over conventional SPM techniques. Finally, we propose some promising directions for the future developments and optimizations of quantum sensors in nanoscale electric sensing and imaging.</p>","PeriodicalId":501227,"journal":{"name":"Quantum Frontiers","volume":"338 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138511680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental 3D super-localization with Laguerre–Gaussian modes","authors":"Chenyu Hu, Liang Xu, Ben Wang, Zhiwen Li, Yipeng Zhang, Yong Zhang, Lijian Zhang","doi":"10.1007/s44214-023-00047-9","DOIUrl":"https://doi.org/10.1007/s44214-023-00047-9","url":null,"abstract":"<p>Improving three-dimensional (3D) localization precision is of paramount importance for super-resolution imaging. By properly engineering the point spread function (PSF), such as utilizing Laguerre–Gaussian (LG) modes and their superposition, the ultimate limits of 3D localization precision can be enhanced. However, achieving these limits is challenging, as it often involves complicated detection strategies and practical limitations. In this work, we rigorously derive the ultimate 3D localization limits of LG modes and their superposition, specifically rotation modes, in the multi-parameter estimation framework. Our findings reveal that a significant portion of the information required for achieving 3D super-localization of LG modes can be obtained through feasible intensity detection. Moreover, the 3D ultimate precision can be achieved when the azimuthal index <i>l</i> is zero. To provide a proof-of-principle demonstration, we develop an iterative maximum likelihood estimation (MLE) algorithm that converges to the 3D position of a point source, considering the pixelation and detector noise. The experimental implementation exhibits an improvement of up to two-fold in lateral localization precision and up to twenty-fold in axial localization precision when using LG modes compared to Gaussian mode. We also showcase the superior axial localization capability of the rotation mode within the near-focus region, effectively overcoming the limitations encountered by single LG modes. Notably, in the presence of realistic aberration, the algorithm robustly achieves the Cramér-Rao lower bound. Our findings provide valuable insights for evaluating and optimizing the achievable 3D localization precision, which will facilitate the advancements in super-resolution microscopy.</p>","PeriodicalId":501227,"journal":{"name":"Quantum Frontiers","volume":"38 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138511670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum FrontiersPub Date : 2023-11-27DOI: 10.1007/s44214-023-00042-0
Xianxin Wu, Jia-Xin Yin, Chao-Xing Liu, Jiangping Hu
{"title":"Topological magnetic line defects in Fe(Te, Se) high-temperature superconductors","authors":"Xianxin Wu, Jia-Xin Yin, Chao-Xing Liu, Jiangping Hu","doi":"10.1007/s44214-023-00042-0","DOIUrl":"https://doi.org/10.1007/s44214-023-00042-0","url":null,"abstract":"<p>The realization of Majorana zero modes in condensed matter have been attracting enormous interests from fundamental science such as topological quantum computation. Recently iron based superconductors were identified as a high-temperature platform for realizing topological superconductivity and Majorana modes. As unconventional superconductors, one of the most important characteristics of them is that they are in the vicinity of magnetic states due to the strong Hund’s coupling in iron atoms. Here we propose that the line defects with missing Te/Se anions in Fe(Se, Te) superconductors provide the realization of intrinsic antiferromagnetic (AFM) chains with Rashba spin-orbit coupling. Against conventional wisdom, Majorana zero modes (MZMs) can be robustly generated at these AFM chain ends. These results can consistently explain the recent experimental observation of zero-energy end states in line defects of monolayer Fe(Te, Se)/SrTiO<sub>3</sub> by scanning tunneling microscopy (STM) measurements. Our research not only demonstrates an unprecedented interplay among native line defect, emergent magnetism and topological superconductivity but also explores a high-temperature platform for Majorana fermions.</p>","PeriodicalId":501227,"journal":{"name":"Quantum Frontiers","volume":"40 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138511667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}