{"title":"Agile collision avoidance for unmanned surface vehicles based on collision shielded model prediction control algorithm","authors":"Yihan Tao, Jia-lu Du","doi":"10.1017/S0373463322000315","DOIUrl":"https://doi.org/10.1017/S0373463322000315","url":null,"abstract":"Abstract Collision avoidance (COLAV) is a prerequisite for the navigation safety of unmanned surface vehicles (USVs). Since USVs have to avoid obstacles clearly and timely, i.e. the COLAV should be agile, the COLAV algorithm should have low computation complexity and make efficient COLAV decisions. However, balancing between the computation complexity and the COLAV decision optimality is still intractable at present. This paper innovatively proposes a COLAV algorithm for USVs by combining the velocity obstacle method with the predictive model method, named the collision shielded model predictive control (CS-MPC) algorithm, such that the agility of USVs COLAV is improved. The runtime of the proposed COLAV algorithm is shortened by shielding the dangerous parts of the search space of the COLAV decisions, and the COLAV decision is efficient with the aid of the accurately predicted motion trajectory by the motion mathematical model of USVs. As such, the USV can safely navigate in complex water areas where multiple vessels and obstacles exist. A series of simulations on a yacht in different kinds of encounter situations were carried out to verify the effectiveness and the agility of the proposed CS-MPC COLAV algorithm.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47828511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determination of latitude by two fixed-altitude sightings","authors":"B. Villmoare","doi":"10.1017/S0373463322000406","DOIUrl":"https://doi.org/10.1017/S0373463322000406","url":null,"abstract":"The use of multiple observations near noon with a traditional sextant to determine a fix is common among celestial navigators. A recent invention is the fixed-angle ‘Bris sextant’ that comes with advantages, but imposes constraints due to its invariant nature. We propose a method by which both longitude and latitude can be fixed using only two sightings with such a device, each equidistant from the meridian. By modelling the solution space for the method, we explore some of the potential utility across geography and seasonal variation. Although this method was developed for use with a Bris fixed-angle sextant, it can also be conveniently used with a more traditional marine or level-bubble sextant. Because this method is computationally cumbersome, it is most convenient when used in a computer or tablet application, or with tables.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45034699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dual-channel LIDAR searching, positioning, tracking and landing system for rotorcraft from ships at sea","authors":"Tao Zeng, Hua Wang, Xiucong Sun, Hui Li, Zhen Lu, Feifei Tong, Hao Cheng, CanLun Zheng, Mengying Zhang","doi":"10.1017/S0373463322000340","DOIUrl":"https://doi.org/10.1017/S0373463322000340","url":null,"abstract":"Abstract To address the shortcomings of existing methods for rotorcraft searching, positioning, tracking and landing on a ship at sea, a dual-channel LIDAR searching, positioning, tracking and landing system (DCLSPTLS) is proposed in this paper, which utilises the multi-pulse laser echoes accumulation method and the physical phenomenon that the laser reflectivity of the ship deck in the near-infrared band is four orders of magnitude higher than that of the sea surface. The DCLSPTLS searching and positioning model, tracking model and landing model are established, respectively. The searching and positioning model can provide estimates of the azimuth angle, the distance of the ship relative to the rotorcraft and the ship's course. With the above parameters as inputs, the total tracking time and the direction of the rotorcraft tracking speed can be obtained by using the tracking model. The landing model can calculate the pitch and the roll angles of the ship's deck relative to the rotorcraft by using the least squares method and the laser irradiation coordinates. The simulation shows that the DCLSPTLS can realise the functions of rotorcraft searching, positioning, tracking and landing by using the above parameters. To verify the effectiveness of the DCLSPTLS, a functional test is performed using a rotorcraft and a model ship on a lake. The test results are consistent with the results of the simulation.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43195028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kefan Shao, Zengke Li, Zhehua Yang, Zan Liu, Yaowen Sun
{"title":"A Doppler enhanced TDCP algorithm based on terrain adaptive and robust Kalman filter using a stand-alone receiver","authors":"Kefan Shao, Zengke Li, Zhehua Yang, Zan Liu, Yaowen Sun","doi":"10.1017/S0373463322000339","DOIUrl":"https://doi.org/10.1017/S0373463322000339","url":null,"abstract":"Abstract Time-differenced carrier phase (TDCP) is a commonly used method of precise velocimetry, but when the receiver is in a dynamic or complex observation environment, the estimation accuracy is reduced. Doppler velocimetry aims at estimating instantaneous velocity, and the accuracy is restricted by the accuracy of measurement. However, in such unfavourable cases, the Doppler measurement is more reliable than the carrier phase measurement. This paper derives the relationship between Doppler observation and TDCP observation, then proposes a Doppler enhanced TDCP algorithm, for the purpose of improving the velocity estimation accuracy in dynamic and complex observation environments. In addition, considering the error caused by the constant speed state update model in the robust Kalman filter (RKF), this paper designs a terrain adaptive and robust Kalman filter (TARKF). After three experimental tests, the improved TDCP algorithm can significantly increase the speed measurement accuracy to sub-metre per second, and the accuracy can be further improved after using TARKF.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47776028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NAV volume 75 issue 4 Cover and Front matter","authors":"","doi":"10.1017/s0373463322000509","DOIUrl":"https://doi.org/10.1017/s0373463322000509","url":null,"abstract":"","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41435243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NAV volume 75 issue 4 Cover and Back matter","authors":"","doi":"10.1017/s0373463322000492","DOIUrl":"https://doi.org/10.1017/s0373463322000492","url":null,"abstract":"","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41495687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remote use of shiphandling simulator: BRM skill acquisition","authors":"Seta Hiroaki, Yoshino Shingo, Takashima Kyoko, Unno Teppei","doi":"10.1017/S0373463322000352","DOIUrl":"https://doi.org/10.1017/S0373463322000352","url":null,"abstract":"Abstract Cadets training to become licensed mariners based on the International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW) Code have been under pressure to keep up with the countermeasures against COVID-19 from the Spring of 2020. For several reasons, sea training voyages were restricted or cancelled, and the schooling style was drastically changed from face-to-face to remote. Since the research vessel owned by Tokai University is not a training vessel exclusively for cadets, the decision was inevitably made to make more effective use of the shiphandling simulator. Because training in the simulator also had to be done remotely, new ideas were put into practice to explore the possibility of building new educational methods. Numerous open-ended evaluation comments were submitted by the cadets who received remote training on the simulator. The results suggested that the remote use of the simulator is likely to be an effective method for training in bridge resource management (BRM).","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46743434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stilianos Contarinis, B. Nakos, L. Tsoulos, Athanasios Palikaris
{"title":"Web-based nautical charts automated compilation from open hydrospatial data","authors":"Stilianos Contarinis, B. Nakos, L. Tsoulos, Athanasios Palikaris","doi":"10.1017/S0373463322000327","DOIUrl":"https://doi.org/10.1017/S0373463322000327","url":null,"abstract":"Abstract Electronic navigational charts (ENCs) are specialised geospatial datasets, issued by or on the authority of a government or hydrographic office, in accordance with the International Hydrographic Organisation's (IHO) standards, specifications and symbol sets. The datasets generally comprise encoded information collected from hydrographic surveys, aimed primarily at the safety of navigation. Most ENCs are not openly available, since the encrypted datasets can be acquired through various license schemes via a centralised distribution network coordinated by two organisations operating on behalf of the coastal states that produce them. This paper describes a methodology and an integrated system developed at the National Technical University of Athens Cartography Laboratory for the generation of web-based nautical charts utilising open data and free software. The system compiles nautical charts compliant with IHO's S-101 latest standard; using open hydrospatial data retrieved from marine spatial data infrastructures (MSDI) and other qualified volunteered geographic information (VGI) sources. Open-source geospatial libraries and web-map vector technologies are used to build the system components and software scripts developed to enable automated compilation. The study also discusses how the system can be improved further by leveraging web services for end-to-end process automation and satellite-derived bathymetry for accurate depiction of seabed topography in low-depth areas.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49056650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rapid star identification algorithm for fish-eye camera based on PPP/INS assistance","authors":"Chonghui Li, Yuanxi Yang, Guorui Xiao, Zhanglei Chen, Shuai Tong, Zihao Liu","doi":"10.1017/S0373463322000285","DOIUrl":"https://doi.org/10.1017/S0373463322000285","url":null,"abstract":"Abstract The fish-eye star sensor with a field of view (FOV) of 180° is an important piece of equipment for attitude determination, which improves the visibility of stars significantly. However, it also brings the star identification (star-ID) difficulties because of imprecise calibrations. Thus, a fish-eye star-ID algorithm supported by the integration of the precise point positioning/inertial navigation system (PPP/INS) is proposed. At first, a reference star map is generated in combination with the distortion model of the fish-eye camera based on the position and attitude information from the PPP/INS. Then the star points are extracted in a specific neighbourhood of the reference star points. Subsequently, the extracted star points are individually tested and identified according to angular distance error. Finally, the real-time precise attitude is determined based on the star-ID results. Experimental results show that, 270–310 stars can be identified in a fish-eye star map with an average time of 0.03 s if the initial attitude error is smaller than 1.5° and an attitude determination accuracy better than 10″ can be achieved by support from PPP/INS.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44186552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Yang, Xinlong Wang, Xiaokun Ding, Qing Wei, Liangliang Shen
{"title":"A fast and accurate transfer alignment method without relying on the empirical model of angular deformation","authors":"Jie Yang, Xinlong Wang, Xiaokun Ding, Qing Wei, Liangliang Shen","doi":"10.1017/S0373463322000261","DOIUrl":"https://doi.org/10.1017/S0373463322000261","url":null,"abstract":"Abstract This paper, in allusion to the limitations of traditional transfer alignment methods based on the external measurement equipment or the empirical model of angular deformation, proposes a rapid and accurate transfer alignment method without relying on the empirical angular deformation model. Firstly, the relationship between the actual angular deformation and the angular velocities measured by the gyroscopes in the master and slave inertial navigation systems (INSs) is derived to roughly estimate the angular deformation. Secondly, according to the error characteristics of gyroscopes, the error model of angular deformation is established. Thirdly, expanding the angular deformation error instead of the installation error angle, flexure angle and flexure angle rate into the state vector, a low-order transfer alignment filtering model independent of the empirical angular deformation model is established. The proposed method not only gets rid of the dependence on an empirical angular deformation model, but also realises the rapid and accurate initial alignment of the slave INS without adding any external measurement equipment. The simulations and experiments evidence the validity of the proposed transfer alignment method.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42726764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}