{"title":"A novel pulsar-based template-independent navigation method","authors":"Zhize Li, Wei Zheng, Yusong Wang","doi":"10.1017/S0373463322000303","DOIUrl":"https://doi.org/10.1017/S0373463322000303","url":null,"abstract":"Abstract Because of the high photon flux, the Crab nebula pulsar is widely used as the observation target for X-ray pulsar-based navigation. The built profile of the Crab pulsar will change over time, however, which means that the pre-calibrated template cannot be used for the long term. In this paper, a novel pulsar-based template-independent navigation method is proposed. The detected phase propagation model is given as a term of position of the vehicle, taking the orbital motion into account. A different method of time-of-arrival process between the recovered profiles is introduced. With the aid of orbital transition matrix, a measurement model is derived to be a term of velocity error of the vehicle varying with time. The state errors of the vehicle are transformed into velocity errors by performing multi-segment observations to achieve the navigation system observability. The navigation equations of the system are then established and can be solved directly. Some simulations are performed to verify the method and suggest that the proposed method is feasible, effective and easy to implement. The precise orbit information of the vehicle can be determined. The state estimation accuracy is basically consistent with the traditional filtering algorithms, and the computational cost is still very low.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"1128 - 1143"},"PeriodicalIF":2.4,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46278899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liping Yang, Yang Bian, Xiaohua Zhao, Yiping Wu, Hao Liu, Xiaoming Liu
{"title":"A graph method of description of driving behaviour characteristics under the guidance of navigation prompt message","authors":"Liping Yang, Yang Bian, Xiaohua Zhao, Yiping Wu, Hao Liu, Xiaoming Liu","doi":"10.1017/S0373463322000273","DOIUrl":"https://doi.org/10.1017/S0373463322000273","url":null,"abstract":"Abstract To verify whether a graph is suitable for describing driver behaviour performance under the effects of navigation information, this study applies two types of prompt messages: simple and detailed. The simple messages contain only direction instructions, while the detailed messages contain distance, direction, road and lane instructions. A driving simulation experiment was designed to collect the empirical data. Two vehicle operating indicators (velocity and lateral offset), and two driver manoeuvre indicators (accelerator power and steering wheel angle) were selected, and T-test was used to compare the differences of behavioural performance. Driving behaviour graphs were constructed for the two message conditions; their characteristics and similarities were further analysed. Finally, the results of T-test of behavioural performance and similarity results of the driving behaviour graphs were compared. Results indicated that the two different types of prompt messages were associated with significant differences in driving behaviours, which implies that it is feasible to describe the characteristics of driving behaviours guided by navigation information using such graphs. This study provides a new method for systematically exploring the mechanisms affecting drivers’ response to navigation information, and presents a new perspective for the optimisation of navigation information.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"1167 - 1189"},"PeriodicalIF":2.4,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49315498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmed Harun-Al-Rashid, Chanjun Yang, Dae-Woon Shin
{"title":"Detection of maritime traffic anomalies using Satellite-AIS and multisensory satellite imageries: Application to the 2021 Suez Canal obstruction","authors":"Ahmed Harun-Al-Rashid, Chanjun Yang, Dae-Woon Shin","doi":"10.1017/S0373463322000364","DOIUrl":"https://doi.org/10.1017/S0373463322000364","url":null,"abstract":"Abstract This study summarises the scenario of maritime traffic anomalies, like the increased congestion and U-turn of ships caused by the ship grounding in the Suez Canal in March 2021. Here, satellite automatic identification system based ship trajectories, and Sentinel-1 and Sentinel-2 images based ship positions are analysed after subdividing the study area into seas, lakes and canals. The results show that the blockage affected the maritime traffic for more than three weeks, waiting ship numbers increased from 5 to 122, and daily one to three ships made a U-turn between 23 and 31 March in the Gulf of Suez. Ship density also increased to more than double in Bitter Lakes with a minimum waiting time of 7 days. Hence, to avoid such prolonged waiting of ships, we propose a warning method based on the sharp speed decrease rate, U-turn and congestion.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"1082 - 1099"},"PeriodicalIF":2.4,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47072115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Agile collision avoidance for unmanned surface vehicles based on collision shielded model prediction control algorithm","authors":"Yihan Tao, Jia-lu Du","doi":"10.1017/S0373463322000315","DOIUrl":"https://doi.org/10.1017/S0373463322000315","url":null,"abstract":"Abstract Collision avoidance (COLAV) is a prerequisite for the navigation safety of unmanned surface vehicles (USVs). Since USVs have to avoid obstacles clearly and timely, i.e. the COLAV should be agile, the COLAV algorithm should have low computation complexity and make efficient COLAV decisions. However, balancing between the computation complexity and the COLAV decision optimality is still intractable at present. This paper innovatively proposes a COLAV algorithm for USVs by combining the velocity obstacle method with the predictive model method, named the collision shielded model predictive control (CS-MPC) algorithm, such that the agility of USVs COLAV is improved. The runtime of the proposed COLAV algorithm is shortened by shielding the dangerous parts of the search space of the COLAV decisions, and the COLAV decision is efficient with the aid of the accurately predicted motion trajectory by the motion mathematical model of USVs. As such, the USV can safely navigate in complex water areas where multiple vessels and obstacles exist. A series of simulations on a yacht in different kinds of encounter situations were carried out to verify the effectiveness and the agility of the proposed CS-MPC COLAV algorithm.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"1243 - 1267"},"PeriodicalIF":2.4,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47828511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determination of latitude by two fixed-altitude sightings","authors":"B. Villmoare","doi":"10.1017/S0373463322000406","DOIUrl":"https://doi.org/10.1017/S0373463322000406","url":null,"abstract":"The use of multiple observations near noon with a traditional sextant to determine a fix is common among celestial navigators. A recent invention is the fixed-angle ‘Bris sextant’ that comes with advantages, but imposes constraints due to its invariant nature. We propose a method by which both longitude and latitude can be fixed using only two sightings with such a device, each equidistant from the meridian. By modelling the solution space for the method, we explore some of the potential utility across geography and seasonal variation. Although this method was developed for use with a Bris fixed-angle sextant, it can also be conveniently used with a more traditional marine or level-bubble sextant. Because this method is computationally cumbersome, it is most convenient when used in a computer or tablet application, or with tables.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"805 - 812"},"PeriodicalIF":2.4,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45034699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dual-channel LIDAR searching, positioning, tracking and landing system for rotorcraft from ships at sea","authors":"Tao Zeng, Hua Wang, Xiucong Sun, Hui Li, Zhen Lu, Feifei Tong, Hao Cheng, CanLun Zheng, Mengying Zhang","doi":"10.1017/S0373463322000340","DOIUrl":"https://doi.org/10.1017/S0373463322000340","url":null,"abstract":"Abstract To address the shortcomings of existing methods for rotorcraft searching, positioning, tracking and landing on a ship at sea, a dual-channel LIDAR searching, positioning, tracking and landing system (DCLSPTLS) is proposed in this paper, which utilises the multi-pulse laser echoes accumulation method and the physical phenomenon that the laser reflectivity of the ship deck in the near-infrared band is four orders of magnitude higher than that of the sea surface. The DCLSPTLS searching and positioning model, tracking model and landing model are established, respectively. The searching and positioning model can provide estimates of the azimuth angle, the distance of the ship relative to the rotorcraft and the ship's course. With the above parameters as inputs, the total tracking time and the direction of the rotorcraft tracking speed can be obtained by using the tracking model. The landing model can calculate the pitch and the roll angles of the ship's deck relative to the rotorcraft by using the least squares method and the laser irradiation coordinates. The simulation shows that the DCLSPTLS can realise the functions of rotorcraft searching, positioning, tracking and landing by using the above parameters. To verify the effectiveness of the DCLSPTLS, a functional test is performed using a rotorcraft and a model ship on a lake. The test results are consistent with the results of the simulation.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"901 - 927"},"PeriodicalIF":2.4,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43195028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kefan Shao, Zengke Li, Zhehua Yang, Zan Liu, Yaowen Sun
{"title":"A Doppler enhanced TDCP algorithm based on terrain adaptive and robust Kalman filter using a stand-alone receiver","authors":"Kefan Shao, Zengke Li, Zhehua Yang, Zan Liu, Yaowen Sun","doi":"10.1017/S0373463322000339","DOIUrl":"https://doi.org/10.1017/S0373463322000339","url":null,"abstract":"Abstract Time-differenced carrier phase (TDCP) is a commonly used method of precise velocimetry, but when the receiver is in a dynamic or complex observation environment, the estimation accuracy is reduced. Doppler velocimetry aims at estimating instantaneous velocity, and the accuracy is restricted by the accuracy of measurement. However, in such unfavourable cases, the Doppler measurement is more reliable than the carrier phase measurement. This paper derives the relationship between Doppler observation and TDCP observation, then proposes a Doppler enhanced TDCP algorithm, for the purpose of improving the velocity estimation accuracy in dynamic and complex observation environments. In addition, considering the error caused by the constant speed state update model in the robust Kalman filter (RKF), this paper designs a terrain adaptive and robust Kalman filter (TARKF). After three experimental tests, the improved TDCP algorithm can significantly increase the speed measurement accuracy to sub-metre per second, and the accuracy can be further improved after using TARKF.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"864 - 877"},"PeriodicalIF":2.4,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47776028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NAV volume 75 issue 4 Cover and Back matter","authors":"","doi":"10.1017/s0373463322000492","DOIUrl":"https://doi.org/10.1017/s0373463322000492","url":null,"abstract":"","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"b1 - b2"},"PeriodicalIF":2.4,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41495687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NAV volume 75 issue 4 Cover and Front matter","authors":"","doi":"10.1017/s0373463322000509","DOIUrl":"https://doi.org/10.1017/s0373463322000509","url":null,"abstract":"","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"f1 - f2"},"PeriodicalIF":2.4,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41435243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remote use of shiphandling simulator: BRM skill acquisition","authors":"Seta Hiroaki, Yoshino Shingo, Takashima Kyoko, Unno Teppei","doi":"10.1017/S0373463322000352","DOIUrl":"https://doi.org/10.1017/S0373463322000352","url":null,"abstract":"Abstract Cadets training to become licensed mariners based on the International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW) Code have been under pressure to keep up with the countermeasures against COVID-19 from the Spring of 2020. For several reasons, sea training voyages were restricted or cancelled, and the schooling style was drastically changed from face-to-face to remote. Since the research vessel owned by Tokai University is not a training vessel exclusively for cadets, the decision was inevitably made to make more effective use of the shiphandling simulator. Because training in the simulator also had to be done remotely, new ideas were put into practice to explore the possibility of building new educational methods. Numerous open-ended evaluation comments were submitted by the cadets who received remote training on the simulator. The results suggested that the remote use of the simulator is likely to be an effective method for training in bridge resource management (BRM).","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"813 - 831"},"PeriodicalIF":2.4,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46743434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}