Devin Caughey, Allan Dafoe, Xinran Li, Luke Miratrix
{"title":"Randomisation inference beyond the sharp null: bounded null hypotheses and quantiles of individual treatment effects","authors":"Devin Caughey, Allan Dafoe, Xinran Li, Luke Miratrix","doi":"10.1093/jrsssb/qkad080","DOIUrl":"https://doi.org/10.1093/jrsssb/qkad080","url":null,"abstract":"Abstract Randomisation inference (RI) is typically interpreted as testing Fisher’s ‘sharp’ null hypothesis that all unit-level effects are exactly zero. This hypothesis is often criticised as restrictive and implausible, making its rejection scientifically uninteresting. We show, however, that many randomisation tests are also valid for a ‘bounded’ null hypothesis under which the unit-level effects are all non-positive (or all non-negative) but are otherwise heterogeneous. In addition to being more plausible a priori, bounded nulls are closely related to substantively important concepts such as monotonicity and Pareto efficiency. Reinterpreting RI in this way expands the range of inferences possible in this framework. We show that exact confidence intervals for the maximum (or minimum) unit-level effect can be obtained by inverting tests for a sequence of bounded nulls. We also generalise RI to cover inference for quantiles of the individual effect distribution as well as for the proportion of individual effects larger (or smaller) than a given threshold. The proposed confidence intervals for all effect quantiles are simultaneously valid, in the sense that no correction for multiple analyses is required. In sum, our reinterpretation and generalisation provide a broader justification for randomisation tests and a basis for exact non-parametric inference for effect quantiles.","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135936658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maxway CRT: improving the robustness of the model-X inference","authors":"Shuangning Li, Molei Liu","doi":"10.1093/jrsssb/qkad081","DOIUrl":"https://doi.org/10.1093/jrsssb/qkad081","url":null,"abstract":"Abstract The model-X conditional randomisation test (CRT) is a flexible and powerful testing procedure for testing the hypothesis X⫫Y∣Z. However, it requires perfect knowledge of X∣Z and may lose its validity when there is an error in modelling X∣Z. This problem is even more severe when Z is of high dimensionality. In response to this, we propose the Maxway CRT, which learns the distribution of Y∣Z and uses it to calibrate the resampling distribution of X to gain robustness to the error in modelling X. We prove that the type-I error inflation of the Maxway CRT can be controlled by the learning error for a low-dimensional adjusting model plus the product of learning errors for X∣Z and Y∣Z, interpreted as an ‘almost doubly robust’ property. Based on this, we develop implementing algorithms of the Maxway CRT in practical scenarios including (surrogate-assisted) semi-supervised learning (SA-SSL) and transfer learning (TL). Through simulations, we demonstrate that the Maxway CRT achieves significantly better type-I error control than existing model-X inference approaches while preserving similar powers. Finally, we apply our methodology to two real examples of SA-SSL and TL.","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136336395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Debiased inference on heterogeneous quantile treatment effects with regression rank scores","authors":"Alexander Giessing, Jingshen Wang","doi":"10.1093/jrsssb/qkad075","DOIUrl":"https://doi.org/10.1093/jrsssb/qkad075","url":null,"abstract":"\u0000 Understanding treatment effect heterogeneity is vital to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework for modelling such heterogeneity. We propose a new method for inference on heterogeneous quantile treatment effects (HQTE) in the presence of high-dimensional covariates. Our estimator combines an ℓ1-penalised regression adjustment with a quantile-specific bias correction scheme based on rank scores. We study the theoretical properties of this estimator, including weak convergence and semi-parametric efficiency of the estimated HQTE process. We illustrate the finite-sample performance of our approach through simulations and an empirical example, dealing with the differential effect of statin usage for lowering low-density lipoprotein cholesterol levels for the Alzheimer’s disease patients who participated in the UK Biobank study.","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"24 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75730711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Sensitivity Analysis for Inverse Probability Weighting Estimators via the Percentile Bootstrap","authors":"","doi":"10.1093/jrsssb/qkad079","DOIUrl":"https://doi.org/10.1093/jrsssb/qkad079","url":null,"abstract":"","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"1 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90507150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Autoregressive optimal transport models.","authors":"Changbo Zhu, Hans-Georg Müller","doi":"10.1093/jrsssb/qkad051","DOIUrl":"https://doi.org/10.1093/jrsssb/qkad051","url":null,"abstract":"<p><p>Series of univariate distributions indexed by equally spaced time points are ubiquitous in applications and their analysis constitutes one of the challenges of the emerging field of distributional data analysis. To quantify such distributional time series, we propose a class of intrinsic autoregressive models that operate in the space of optimal transport maps. The autoregressive transport models that we introduce here are based on regressing optimal transport maps on each other, where predictors can be transport maps from an overall barycenter to a current distribution or transport maps between past consecutive distributions of the distributional time series. Autoregressive transport models and their associated distributional regression models specify the link between predictor and response transport maps by moving along geodesics in Wasserstein space. These models emerge as natural extensions of the classical autoregressive models in Euclidean space. Unique stationary solutions of autoregressive transport models are shown to exist under a geometric moment contraction condition of Wu & Shao [(2004) Limit theorems for iterated random functions. <i>Journal of Applied Probability 41</i>, 425-436)], using properties of iterated random functions. We also discuss an extension to a varying coefficient model for first-order autoregressive transport models. In addition to simulations, the proposed models are illustrated with distributional time series of house prices across U.S. counties and annual summer temperature distributions.</p>","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"85 3","pages":"1012-1033"},"PeriodicalIF":5.8,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/69/84/qkad051.PMC10376456.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9910306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Testing homogeneity: the trouble with sparse functional data.","authors":"Changbo Zhu, Jane-Ling Wang","doi":"10.1093/jrsssb/qkad021","DOIUrl":"https://doi.org/10.1093/jrsssb/qkad021","url":null,"abstract":"<p><p>Testing the homogeneity between two samples of functional data is an important task. While this is feasible for intensely measured functional data, we explain why it is challenging for sparsely measured functional data and show what can be done for such data. In particular, we show that testing the marginal homogeneity based on point-wise distributions is feasible under some mild constraints and propose a new two-sample statistic that works well with both intensively and sparsely measured functional data. The proposed test statistic is formulated upon energy distance, and the convergence rate of the test statistic to its population version is derived along with the consistency of the associated permutation test. The aptness of our method is demonstrated on both synthetic and real data sets.</p>","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"85 3","pages":"705-731"},"PeriodicalIF":5.8,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/e2/qkad021.PMC10376451.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9964440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the causal interpretation of randomised interventional indirect effects","authors":"Caleb H Miles","doi":"10.1093/jrsssb/qkad066","DOIUrl":"https://doi.org/10.1093/jrsssb/qkad066","url":null,"abstract":"Abstract Identification of standard mediated effects such as the natural indirect effect relies on heavy causal assumptions. By circumventing such assumptions, so-called randomised interventional indirect effects have gained popularity in the mediation literature. Here, I introduce properties one might demand of an indirect effect measure in order for it to have a true mediational interpretation. For instance, the sharp null criterion requires an indirect effect measure to be null whenever no individual-level indirect effect exists. I show that without stronger assumptions, randomised interventional indirect effects do not satisfy such criteria. I additionally discuss alternative causal interpretations of such effects.","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135155944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two-stage estimation and bias-corrected empirical likelihood in a partially linear single-index varying-coefficient model","authors":"L. Xue","doi":"10.1093/jrsssb/qkad060","DOIUrl":"https://doi.org/10.1093/jrsssb/qkad060","url":null,"abstract":"\u0000 The estimation and empirical likelihood (EL) of the parameters of interest in a partially linear single-index varying-coefficient model are studied. A two-stage method is presented to estimate the regression parameters and the coefficient functions. The asymptotic distributions of the proposed estimators are obtained. Meanwhile, a bias-corrected EL ratio for the regression parameters is proposed. It is shown that the ratio is asymptotically standard chi-squared. The result can be directly used to construct the EL confidence regions of the regression parameters. Simulation studies are carried out to evaluate the finite sample behaviour of the proposed method. An application example of a real data set is given.","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"31 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75007076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Testing for the Markov property in time series via deep conditional generative learning.","authors":"Yunzhe Zhou, Chengchun Shi, Lexin Li, Qiwei Yao","doi":"10.1093/jrsssb/qkad064","DOIUrl":"10.1093/jrsssb/qkad064","url":null,"abstract":"<p><p>The Markov property is widely imposed in analysis of time series data. Correspondingly, testing the Markov property, and relatedly, inferring the order of a Markov model, are of paramount importance. In this article, we propose a nonparametric test for the Markov property in high-dimensional time series via deep conditional generative learning. We also apply the test sequentially to determine the order of the Markov model. We show that the test controls the type-I error asymptotically, and has the power approaching one. Our proposal makes novel contributions in several ways. We utilise and extend state-of-the-art deep generative learning to estimate the conditional density functions, and establish a sharp upper bound on the approximation error of the estimators. We derive a doubly robust test statistic, which employs a nonparametric estimation but achieves a parametric convergence rate. We further adopt sample splitting and cross-fitting to minimise the conditions required to ensure the consistency of the test. We demonstrate the efficacy of the test through both simulations and the three data applications.</p>","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"85 4","pages":"1204-1222"},"PeriodicalIF":5.8,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41140853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Normalised latent measure factor models","authors":"Mario Beraha, Jim E Griffin","doi":"10.1093/jrsssb/qkad062","DOIUrl":"https://doi.org/10.1093/jrsssb/qkad062","url":null,"abstract":"Abstract We propose a methodology for modelling and comparing probability distributions within a Bayesian nonparametric framework. Building on dependent normalised random measures, we consider a prior distribution for a collection of discrete random measures where each measure is a linear combination of a set of latent measures, interpretable as characteristic traits shared by different distributions, with positive random weights. The model is nonidentified and a method for postprocessing posterior samples to achieve identified inference is developed. This uses Riemannian optimisation to solve a nontrivial optimisation problem over a Lie group of matrices. The effectiveness of our approach is validated on simulated data and in two applications to two real-world data sets: school student test scores and personal incomes in California. Our approach leads to interesting insights for populations and easily interpretable posterior inference.","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136000276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}