用回归等级评分对异质性分位数治疗效果的去偏推断

IF 3.1 1区 数学 Q1 STATISTICS & PROBABILITY
Alexander Giessing, Jingshen Wang
{"title":"用回归等级评分对异质性分位数治疗效果的去偏推断","authors":"Alexander Giessing, Jingshen Wang","doi":"10.1093/jrsssb/qkad075","DOIUrl":null,"url":null,"abstract":"\n Understanding treatment effect heterogeneity is vital to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework for modelling such heterogeneity. We propose a new method for inference on heterogeneous quantile treatment effects (HQTE) in the presence of high-dimensional covariates. Our estimator combines an ℓ1-penalised regression adjustment with a quantile-specific bias correction scheme based on rank scores. We study the theoretical properties of this estimator, including weak convergence and semi-parametric efficiency of the estimated HQTE process. We illustrate the finite-sample performance of our approach through simulations and an empirical example, dealing with the differential effect of statin usage for lowering low-density lipoprotein cholesterol levels for the Alzheimer’s disease patients who participated in the UK Biobank study.","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"24 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Debiased inference on heterogeneous quantile treatment effects with regression rank scores\",\"authors\":\"Alexander Giessing, Jingshen Wang\",\"doi\":\"10.1093/jrsssb/qkad075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Understanding treatment effect heterogeneity is vital to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework for modelling such heterogeneity. We propose a new method for inference on heterogeneous quantile treatment effects (HQTE) in the presence of high-dimensional covariates. Our estimator combines an ℓ1-penalised regression adjustment with a quantile-specific bias correction scheme based on rank scores. We study the theoretical properties of this estimator, including weak convergence and semi-parametric efficiency of the estimated HQTE process. We illustrate the finite-sample performance of our approach through simulations and an empirical example, dealing with the differential effect of statin usage for lowering low-density lipoprotein cholesterol levels for the Alzheimer’s disease patients who participated in the UK Biobank study.\",\"PeriodicalId\":49982,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series B-Statistical Methodology\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series B-Statistical Methodology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssb/qkad075\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series B-Statistical Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkad075","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

了解治疗效果的异质性对许多科学领域至关重要,因为相同的治疗可能对不同的个体产生不同的影响。分位数回归为这种异质性的建模提供了一个自然的框架。我们提出了一种在高维协变量存在下推断异质分位数处理效应(HQTE)的新方法。我们的估计器结合了1-惩罚回归调整和基于秩分数的分位数特定偏差校正方案。我们研究了该估计量的理论性质,包括估计的HQTE过程的弱收敛性和半参数效率。我们通过模拟和一个经验例子来说明我们方法的有限样本性能,处理他汀类药物使用对参加英国生物银行研究的阿尔茨海默病患者降低低密度脂蛋白胆固醇水平的不同效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Debiased inference on heterogeneous quantile treatment effects with regression rank scores
Understanding treatment effect heterogeneity is vital to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework for modelling such heterogeneity. We propose a new method for inference on heterogeneous quantile treatment effects (HQTE) in the presence of high-dimensional covariates. Our estimator combines an ℓ1-penalised regression adjustment with a quantile-specific bias correction scheme based on rank scores. We study the theoretical properties of this estimator, including weak convergence and semi-parametric efficiency of the estimated HQTE process. We illustrate the finite-sample performance of our approach through simulations and an empirical example, dealing with the differential effect of statin usage for lowering low-density lipoprotein cholesterol levels for the Alzheimer’s disease patients who participated in the UK Biobank study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
0.00%
发文量
83
审稿时长
>12 weeks
期刊介绍: Series B (Statistical Methodology) aims to publish high quality papers on the methodological aspects of statistics and data science more broadly. The objective of papers should be to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods; any mathematical theory should be directed towards these aims. The kinds of contribution considered include descriptions of new methods of collecting or analysing data, with the underlying theory, an indication of the scope of application and preferably a real example. Also considered are comparisons, critical evaluations and new applications of existing methods, contributions to probability theory which have a clear practical bearing (including the formulation and analysis of stochastic models), statistical computation or simulation where original methodology is involved and original contributions to the foundations of statistical science. Reviews of methodological techniques are also considered. A paper, even if correct and well presented, is likely to be rejected if it only presents straightforward special cases of previously published work, if it is of mathematical interest only, if it is too long in relation to the importance of the new material that it contains or if it is dominated by computations or simulations of a routine nature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信