Mathematical Inequalities & Applications最新文献

筛选
英文 中文
On the number of real zeros of real entire functions with a non-decreasing sequence of the second quotients of Taylor coefficients 关于具有泰勒系数二阶商非递减序列的实数整函数的实数零的个数
IF 1 4区 数学
Mathematical Inequalities & Applications Pub Date : 2021-01-28 DOI: 10.7153/mia-2022-25-06
Thu Hien Nguyen, A. Vishnyakova
{"title":"On the number of real zeros of real entire functions with a non-decreasing sequence of the second quotients of Taylor coefficients","authors":"Thu Hien Nguyen, A. Vishnyakova","doi":"10.7153/mia-2022-25-06","DOIUrl":"https://doi.org/10.7153/mia-2022-25-06","url":null,"abstract":"For an entire function f (z) = ∑k=0 akz , ak > 0, we define the sequence of the second quotients of Taylor coefficients Q := (","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44882574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Numerical radius in Hilbert C✻-modules 数值半径在希尔伯特C -模块
IF 1 4区 数学
Mathematical Inequalities & Applications Pub Date : 2021-01-12 DOI: 10.7153/mia-2021-24-71
A. Zamani
{"title":"Numerical radius in Hilbert C✻-modules","authors":"A. Zamani","doi":"10.7153/mia-2021-24-71","DOIUrl":"https://doi.org/10.7153/mia-2021-24-71","url":null,"abstract":". Utilizing the linking algebra of a Hilbert C ∗ -module (cid:2) V , (cid:3)·(cid:3) (cid:3) , we introduce Ω ( x ) as a de fi nition of numerical radius for an element x ∈ V and then show that Ω ( · ) is a norm on V such that 12 (cid:3) x (cid:3) (cid:2) Ω ( x ) (cid:2) (cid:3) x (cid:3) . In addition, we obtain an equivalent condition for Ω ( x ) = 12 (cid:3) x (cid:3) . Moreover, we present a re fi nement of the triangle inequality for the norm Ω ( · ) . Some other related results are also discussed.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41524042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Convergence in measure of Fejér means of two parameter conjugate Walsh transforms fejsamir的收敛性意味着两个参数共轭Walsh变换
IF 1 4区 数学
Mathematical Inequalities & Applications Pub Date : 2021-01-01 DOI: 10.7153/MIA-2021-24-09
U. Goginava, S. Said
{"title":"Convergence in measure of Fejér means of two parameter conjugate Walsh transforms","authors":"U. Goginava, S. Said","doi":"10.7153/MIA-2021-24-09","DOIUrl":"https://doi.org/10.7153/MIA-2021-24-09","url":null,"abstract":". Weisz proved-among others – that for f ∈ L log L the Fej´er means (cid:2) σ ( t , u ) n , m of conjugate transform of two-parameter Walsh-Fourier series a. e. converges to f ( t , u ) . The main aim of this paper is to prove that for any Orlicz space, which is not a subspace of L log L , the set of functions for which Walsh-Fej´er Means of two parameter Conjugate Transforms converge in measure is of fi rst Baire category.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71203744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An extension of a Hardy's inequality and its applications 哈代不等式的推广及其应用
IF 1 4区 数学
Mathematical Inequalities & Applications Pub Date : 2021-01-01 DOI: 10.7153/mia-2021-24-47
Łukasz Kamiński, A. Osȩkowski
{"title":"An extension of a Hardy's inequality and its applications","authors":"Łukasz Kamiński, A. Osȩkowski","doi":"10.7153/mia-2021-24-47","DOIUrl":"https://doi.org/10.7153/mia-2021-24-47","url":null,"abstract":"","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71203946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp inequalities between L^p-norms for the higher dimensional Hardy operator and its dual 高维Hardy算子及其对偶的L^p-范数之间的尖锐不等式
IF 1 4区 数学
Mathematical Inequalities & Applications Pub Date : 2021-01-01 DOI: 10.7153/MIA-2021-24-20
Fayou Zhao, R. Liu
{"title":"Sharp inequalities between L^p-norms for the higher dimensional Hardy operator and its dual","authors":"Fayou Zhao, R. Liu","doi":"10.7153/MIA-2021-24-20","DOIUrl":"https://doi.org/10.7153/MIA-2021-24-20","url":null,"abstract":". We derive the two-sided inequalities between L p ( X ) -norms ( 1 < p < ∞ ) of the higher dimensional Hardy operator and its dual, where the underlying space X is the Heisenberg group H n or the Euclidean space R n . The interest of main results is that it relates two-sided inequalities with sharp constants which are dimension free. The methodology is completely depending on the rotation method.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71204032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A variable exponent boundedness of the Steklov operator Steklov算子的变指数有界性
IF 1 4区 数学
Mathematical Inequalities & Applications Pub Date : 2021-01-01 DOI: 10.7153/mia-2021-24-45
Y. Zeren
{"title":"A variable exponent boundedness of the Steklov operator","authors":"Y. Zeren","doi":"10.7153/mia-2021-24-45","DOIUrl":"https://doi.org/10.7153/mia-2021-24-45","url":null,"abstract":"","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71204321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positive definiteness on products via generalized Stieltjes and other functions 利用广义Stieltjes和其他函数求积的正确定性
IF 1 4区 数学
Mathematical Inequalities & Applications Pub Date : 2021-01-01 DOI: 10.7153/MIA-2021-24-33
V. Menegatto
{"title":"Positive definiteness on products via generalized Stieltjes and other functions","authors":"V. Menegatto","doi":"10.7153/MIA-2021-24-33","DOIUrl":"https://doi.org/10.7153/MIA-2021-24-33","url":null,"abstract":". Let ( X , ρ ) and ( Y , σ ) be quasi-metric spaces and λ a fi xed positive real number. This paper establishes the positive de fi niteness of functions of the form on X × Y , where r (cid:2) λ , f belongs to the convex cone of all generalized Stieltjes functions of order λ , and g and h are positive valued conditionally negative de fi nite functions on ( X , ρ ) and ( Y , σ ) , respectively. As a bypass, it establishes the positive de fi niteness of functions of the form H for a generalized complete Bernstein function f of order λ , under the same assumptions on r , g and h . The paper also provides necessary and suf fi cient conditions for the strict positive de fi niteness of the two models when the spaces involved are metric. The two results yield addi- tional methods to construct positive de fi nite and strictly positive de fi nite functions on a product of metric spaces by integral transforms.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71204363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Weighted estimates and compactness of variation operators 变分算子的加权估计和紧性
IF 1 4区 数学
Mathematical Inequalities & Applications Pub Date : 2021-01-01 DOI: 10.7153/mia-2021-24-65
Yongm ng Wen, Quanq ng Fang, Xianm ng Hou
{"title":"Weighted estimates and compactness of variation operators","authors":"Yongm ng Wen, Quanq ng Fang, Xianm ng Hou","doi":"10.7153/mia-2021-24-65","DOIUrl":"https://doi.org/10.7153/mia-2021-24-65","url":null,"abstract":"","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"36 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71204620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lower bounds for the spread of a nonnegative matrix 非负矩阵展开的下界
IF 1 4区 数学
Mathematical Inequalities & Applications Pub Date : 2021-01-01 DOI: 10.7153/mia-2021-24-55
R. Drnovšek
{"title":"Lower bounds for the spread of a nonnegative matrix","authors":"R. Drnovšek","doi":"10.7153/mia-2021-24-55","DOIUrl":"https://doi.org/10.7153/mia-2021-24-55","url":null,"abstract":"","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"21 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71204699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improved fractional Hardy inequalities for Dunkl gradient 改进分数阶Hardy不等式的Dunkl梯度
IF 1 4区 数学
Mathematical Inequalities & Applications Pub Date : 2021-01-01 DOI: 10.7153/MIA-2021-24-10
V. P. Anoop, S. Parui
{"title":"Improved fractional Hardy inequalities for Dunkl gradient","authors":"V. P. Anoop, S. Parui","doi":"10.7153/MIA-2021-24-10","DOIUrl":"https://doi.org/10.7153/MIA-2021-24-10","url":null,"abstract":". Weprove an improved fractional Hardy inequality in the Dunkl setting for the weighted space L p ( R N , d μ k ( x )) . Also we prove a similar inequality for half-space. Mathematics","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71203500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信