Positive definiteness on products via generalized Stieltjes and other functions

IF 0.9 4区 数学 Q2 MATHEMATICS
V. Menegatto
{"title":"Positive definiteness on products via generalized Stieltjes and other functions","authors":"V. Menegatto","doi":"10.7153/MIA-2021-24-33","DOIUrl":null,"url":null,"abstract":". Let ( X , ρ ) and ( Y , σ ) be quasi-metric spaces and λ a fi xed positive real number. This paper establishes the positive de fi niteness of functions of the form on X × Y , where r (cid:2) λ , f belongs to the convex cone of all generalized Stieltjes functions of order λ , and g and h are positive valued conditionally negative de fi nite functions on ( X , ρ ) and ( Y , σ ) , respectively. As a bypass, it establishes the positive de fi niteness of functions of the form H for a generalized complete Bernstein function f of order λ , under the same assumptions on r , g and h . The paper also provides necessary and suf fi cient conditions for the strict positive de fi niteness of the two models when the spaces involved are metric. The two results yield addi- tional methods to construct positive de fi nite and strictly positive de fi nite functions on a product of metric spaces by integral transforms.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/MIA-2021-24-33","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

. Let ( X , ρ ) and ( Y , σ ) be quasi-metric spaces and λ a fi xed positive real number. This paper establishes the positive de fi niteness of functions of the form on X × Y , where r (cid:2) λ , f belongs to the convex cone of all generalized Stieltjes functions of order λ , and g and h are positive valued conditionally negative de fi nite functions on ( X , ρ ) and ( Y , σ ) , respectively. As a bypass, it establishes the positive de fi niteness of functions of the form H for a generalized complete Bernstein function f of order λ , under the same assumptions on r , g and h . The paper also provides necessary and suf fi cient conditions for the strict positive de fi niteness of the two models when the spaces involved are metric. The two results yield addi- tional methods to construct positive de fi nite and strictly positive de fi nite functions on a product of metric spaces by integral transforms.
利用广义Stieltjes和其他函数求积的正确定性
。设(X, ρ)和(Y, σ)为准度量空间,λ为定正实数。本文建立了X × Y上形式函数的正定确性,其中r (cid:2) λ, f属于所有λ阶广义Stieltjes函数的凸锥,g和h分别是(X, ρ)和(Y, σ)上的正值条件负定确函数。作为一个旁路,它建立了一个λ阶的广义完全Bernstein函数f的形式为H的函数的正定定性,在相同的假设下r, g和H。本文还给出了当涉及的空间为度量空间时两种模型的严格正定性的充分必要条件。这两个结果给出了用积分变换在度量空间积上构造正定和严格正定函数的附加方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信