{"title":"Non-locality as a regularization mechanism in elastodynamics","authors":"J.R. Fernández , R. Quintanilla","doi":"10.1016/j.mechrescom.2024.104280","DOIUrl":"10.1016/j.mechrescom.2024.104280","url":null,"abstract":"<div><p>It is well known that the solutions to the elastodynamic problem do not satisfy continuous dependence properties on the initial values, and/or supply terms, when the elastic tensor fails to be positive. In fact, the behavior of the solutions can be very explosive since the elements of the spectrum can go to infinite. Therefore, it is very relevant to identify thermomechanical mechanisms regularizing the behavior of the solutions. So, the main aim of this note is to show, from an analytical point of view, how the <em>non-locality</em>, in the sense of Eringen, is a mechanism satisfying this property of regularization of the solutions. It is worth noting that such system has not been previously studied from an analytical point of view. We firstly obtain the existence of the solutions to this problem, even when we do not assume any positivity on the elastic tensor. This result is proved with the help of the linear semigroups theory; however, even with these regularizing effects, the solutions to this problem are unstable. A particular easy one-dimensional problem is also considered. The extension of the existence and instability results to the thermoelastic case is pointed out later. Finally, we also study the spatial behavior of the solutions to the problem in the case that the region is a semi-infinite cylinder, and we obtain a Phragmen–Lindelöf alternative of the exponential type. This result is also relevant because a similar result, without considering regularizing terms, is unknown if the elastic tensor is not positive definite.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0093641324000405/pdfft?md5=994a15812920cf093c2e25e6b0fb04b0&pid=1-s2.0-S0093641324000405-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140758618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Xue , Zeyu Li , Fang Wu , Yuhan Wei , Yichuan Shao , Mangong Zhang , Juan Liao
{"title":"Vibration transmission characteristics of the pyramidal cylinder lattice truss structure","authors":"Xin Xue , Zeyu Li , Fang Wu , Yuhan Wei , Yichuan Shao , Mangong Zhang , Juan Liao","doi":"10.1016/j.mechrescom.2024.104279","DOIUrl":"https://doi.org/10.1016/j.mechrescom.2024.104279","url":null,"abstract":"<div><p>In this work, an innovative cylindrical metamaterial inspired by origami was developed. It featured arrays of pyramid units arranged both circumferentially and axially. The vibration transfer characteristics were determined using numerical method (Frequency Domain Frequency Response Solver of COMSOL) and dynamic testing (Scanning Vibrometer System). The results indicate that the structure effectively attenuates vibrations within the 0–6000 Hz range. Adjusting key geometric parameters can widen or shift vibration attenuation bands toward low–frequencies. Increasing the rod diameter weakens the vibration attenuation capability, while an increase in circumferential and axial angles has a positive impact on the frequency band for vibration attenuation. The significance of this work lies in providing an appropriate method to enhance vibration attenuation for the design and optimization of engineering structures.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140643865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discrete modeling of elastic heterogeneous media","authors":"Q. Zhang , J. Eliáš , K. Nagai , J.E. Bolander","doi":"10.1016/j.mechrescom.2024.104277","DOIUrl":"https://doi.org/10.1016/j.mechrescom.2024.104277","url":null,"abstract":"<div><p>Discrete models provide advantages in simulating fracture in quasi-brittle materials due, in part, to their simplicity in representing cracking and other forms of displacement discontinuity. However, the stress analyses that form the basis for fracture simulation are complicated by difficulties in modeling the Poisson effect and other aspects of elastic behavior. The capabilities of Voronoi-cell lattice models, which are a form of particle-based lattice model, for elastic stress analysis are evaluated. It is found that the conventional means for representing the Poisson effect in particle-based lattice models result in spatially correlated stress oscillations that, at first glance, mimic the effects of material heterogeneity. The correlation length is dependent on discretization size. Alternatively, material heterogeneity can be introduced into elastically uniform lattice models via random assignments of material properties, independent of mesh size and geometry.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140622177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthias Birner , Patrick Diehl , Robert Lipton , Marc Alexander Schweitzer
{"title":"A multiscale fracture model using peridynamic enrichment of finite elements within an adaptive partition of unity: Experimental validation","authors":"Matthias Birner , Patrick Diehl , Robert Lipton , Marc Alexander Schweitzer","doi":"10.1016/j.mechrescom.2024.104275","DOIUrl":"https://doi.org/10.1016/j.mechrescom.2024.104275","url":null,"abstract":"<div><p>Partition of unity methods (PUM) are of domain decomposition type and provide the opportunity for multiscale and multiphysics numerical modeling. Here, we apply Peridynamic (PD) enrichment to propagate cracks in the PUM global–local enrichment scheme. We apply linear elasticity globally and PD over local zones where fractures occur. The elastic fields provide appropriate boundary data for local PD simulations on a subdomain containing the crack tip to grow the crack. Once the updated crack path is found the elastic field in the body and surrounding the crack is updated using the PUM basis with an elastic field enrichment near the crack. The subdomain for the PD simulation is chosen to include the current crack tip as well as features that influence crack growth. This paper is part II of this series and validates the combined PD/PUM simulator against the experimental results. The results of numerical simulation show that we attain good agreement between experiment and simulation with a local PD subdomain that is moving with the crack tip and adaptively chosen size.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140605772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luca Placidi , Julia de Castro Motta , Fernando Fraternali
{"title":"Bandgap structure of tensegrity mass–spring chains equipped with internal resonators","authors":"Luca Placidi , Julia de Castro Motta , Fernando Fraternali","doi":"10.1016/j.mechrescom.2024.104273","DOIUrl":"https://doi.org/10.1016/j.mechrescom.2024.104273","url":null,"abstract":"<div><p>This work studies the dispersion relation of a Maxwell type mass–spring chain formed by lumped masses and the parallel arrangement of two different types of tensegrity prisms. Use is made of the Bloch–Floquet theory of discrete systems in association with a linearized model of the response of the tensegrity units under compression loading. Such a modeling is aimed at studying the propagation of compression waves under small perturbations of the initial equilibrium state of the system. For a given value of the cable’s prestress, the tensegrity systems connecting the lumped masses react as elastic springs, which exhibit axial deformations accompanied by relative twisting rotations of the terminal bases. The twisting motion of the chain affects the expression of the kinetic energy, and is accounted for by introducing a suitable definition of equivalent masses. The bandgap structure of the analyzed system is analytically determined and numerical results are obtained for a chain formed by physical models tensegrity <span><math><mrow><mi>θ</mi><mo>=</mo><mn>1</mn></mrow></math></span> prisms aligned in parallel with minimal tensegrity prisms. The given results highlight the highly tunable frequency bandgap properties of tensegrity mass–spring chains exhibiting internal resonance capabilities.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140555657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of a tensegrity camber morphing airfoil","authors":"Heping Liu, Jian Song, Ani Luo","doi":"10.1016/j.mechrescom.2024.104272","DOIUrl":"https://doi.org/10.1016/j.mechrescom.2024.104272","url":null,"abstract":"<div><p>This study presents a novel tensegrity camber morphing airfoil (TenCMA), which has the ability of the large and smooth camber morphing. The configuration of TenCMA is determined by the error bound method. The optimal configuration of TenCMA is obtained by comparing the aerodynamic characteristics of TenCMA and traditional airfoil. Based on the beam-tensegrity dynamics, the shape control law of TenCMA is presented to control the camber morphing, whereas the force in strings are the control variables. The optimal actuator selection method is derived by the positive spanning set to select the minimum number of actuators and give the optimal control energy of TenCMA. The results of shape control show that TenCMA can smoothly change the trailing edge with the optimal selected actuators and minimum control energy. Finally, we compared the aerodynamic characteristics of TenCMA and traditional airfoil with the same equivalent deflection angle. Results show that TenCMA can significantly improve the aerodynamic performance of the morphing airfoil.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140559023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michele Ciarletta , Brian Straughan , Vincenzo Tibullo
{"title":"Discontinuity waves in temperature and diffusion models","authors":"Michele Ciarletta , Brian Straughan , Vincenzo Tibullo","doi":"10.1016/j.mechrescom.2024.104274","DOIUrl":"https://doi.org/10.1016/j.mechrescom.2024.104274","url":null,"abstract":"<div><p>We analyse shock wave behaviour in a hyperbolic diffusion system with a general forcing term which is qualitatively not dissimilar to a logistic growth term. The amplitude behaviour is interesting and depends critically on a parameter in the forcing term. We also develop a fully nonlinear acceleration wave analysis for a hyperbolic theory of diffusion coupled to temperature evolution. We consider a rigid body and we show that for three-dimensional waves there is a fast wave and a slow wave. The amplitude equation is derived exactly for a one-dimensional (plane) wave and the amplitude is found for a wave moving into a region of constant temperature and solute concentration. This analysis is generalized to allow for forcing terms of Selkov–Schnakenberg, or Al Ghoul-Eu cubic reaction type. We briefly consider a nonlinear acceleration wave in a heat conduction theory with two solutes present, resulting in a model with equations for temperature and each of two solute concentrations. Here it is shown that three waves may propagate.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140539122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meijia Wang , Yafeng Wang , Ruhe Mei , Zhaojun Liu , Xian Xu
{"title":"Motion behavior of a 30-strut locomotive tensegrity robot","authors":"Meijia Wang , Yafeng Wang , Ruhe Mei , Zhaojun Liu , Xian Xu","doi":"10.1016/j.mechrescom.2024.104270","DOIUrl":"https://doi.org/10.1016/j.mechrescom.2024.104270","url":null,"abstract":"<div><p>Tensegrity structure is a prestressed self-equilibrated system consisting of compressed struts and tensioned tendons. The shape and position of tensegrity can be actively controlled by changing the lengths of members, making it attractive as a platform for adaptive bionic and locomotive robots. In this paper, the regular 30-strut tensegrity is used as the skeleton of a locomotive robot. The robot is flexible and highly redundant, making it adaptive to unconstrained environments and ideal for various co-robotic scenarios such as space exploration, emergency rescue, and so on. Compared with the 6-strut tensegrity robot, the 30-strut tensegrity robot with more controllable degrees of freedom possesses more various motion behaviors as well as gait primitives. To demonstrate the effectiveness of the motion behaviors of the 30-strut locomotive robot, we analyze the diverse collection of behaviors generated by actively changing the lengths of struts. It is found that rolling motion is robust and easy to be actuated, and multi-gait and individual-gait of rolling motion are observed. However, its high dimensionality and strong dynamic nature complicate the motion control. A physical prototype is manufactured to verify the found motion behaviors. The results show the potential uses of 30-strut tensegrity as multifunctional locomotive robots.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140535468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victor A.S.M. Paiva , Paulo R.G. Kurka , Jaime H. Izuka
{"title":"Analytical definitions of connectivity, incidence and node matrices for t-struts tensegrity prisms","authors":"Victor A.S.M. Paiva , Paulo R.G. Kurka , Jaime H. Izuka","doi":"10.1016/j.mechrescom.2024.104271","DOIUrl":"https://doi.org/10.1016/j.mechrescom.2024.104271","url":null,"abstract":"<div><p>Regular tensegrity prism modules are widely used by researchers. Numerous research articles combine them to form grids and towers under various assembly strategies. Most of them define connectivity and node matrices that satisfy their structures as a whole, but a general definition for the basic modules has not been formally reported. This paper formalizes sets of definitions for the connectivity, incidence, and node matrices that are valid for any tensegrity prism formed by four struts or more. The definitions are based on geometry and provide simple and general formulations by applying floor and ceiling operators. Both clockwise and counterclockwise rotated modules are covered.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140350274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Active elastic metamaterials with equidistant solely resonant bandgaps","authors":"Hasan B. Al Ba’ba’a","doi":"10.1016/j.mechrescom.2024.104269","DOIUrl":"10.1016/j.mechrescom.2024.104269","url":null,"abstract":"<div><p>Elastic metamaterials are man-made structures with properties that transcend naturally occurring materials. One predominant feature of elastic metamaterials is locally resonant bandgaps, i.e., frequency ranges at which wave propagation is blocked. Locally resonant bandgaps appear at relatively low frequency and arise from the existence of periodically placed mechanical local resonators. Typically, elastic metamaterials exhibit both locally resonant and Bragg-scattering bandgaps, which can generally be different in width and frequency ranges. This paper proposes two designs of active elastic metamaterials that only exhibit locally resonant bandgaps, which are infinite in number, evenly spaced in the frequency spectrum, and identical in width. The mathematical model is established using the transfer matrix method and synthesis of locally resonant bandgaps is achieved via an active elastic support with carefully designed frequency-dependent stiffness. A single unit cell of each proposed metamaterials is thoroughly studied, and its dispersion relation is derived analytically, along with the periodically repeating bandgap limits and widths. Following the dispersion analysis and bandgap parametric studies, finite arrays of the proposed metamaterials are considered, and their frequency response is calculated to verify the analytical predictions from dispersion analyses.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}