Yunyue Zhen , Xueqing Li , Shan Huang , Ruijie Wang , Luan Yang , Yingjian Huang , Jianjun Yan , Jiaoying Ju , He Wen , Qing Sun
{"title":"LncRNA lnc-SPRR2G-2 contributes to keratinocyte hyperproliferation and inflammation in psoriasis by activating the STAT3 pathway and downregulating KHSRP","authors":"Yunyue Zhen , Xueqing Li , Shan Huang , Ruijie Wang , Luan Yang , Yingjian Huang , Jianjun Yan , Jiaoying Ju , He Wen , Qing Sun","doi":"10.1016/j.mcp.2024.101967","DOIUrl":"10.1016/j.mcp.2024.101967","url":null,"abstract":"<div><p>Psoriasis is a chronic inflammatory disease characterized by increased keratinocyte proliferation and local inflammation. Long noncoding RNAs (lncRNAs) play important regulatory roles in many immune-mediated diseases, including psoriasis. In this study, we aimed to investigate the role and mechanism of lnc-SPRR2G-2 (SPRR2G) in M5-treated psoriatic keratinocytes.</p><p>Fluorescence in situ hybridization and quantitative real-time polymerase chain reaction (qRT-PCR) showed that lnc-SPRR2G-2 was significantly upregulated in psoriasis tissues and psoriatic keratinocytes. In psoriatic keratinocytes, functional and molecular experiment analyses demonstrated that SPRR2G regulated proliferation, cell cycle and apoptosis, and induced the expression of S100 calcium binding protein A7 (S100A7), interleukin (IL)-1β, IL-8 and C-X-C motif chemokine ligand 10 (CXCL10). The function of SPRR2G in psoriasis is related to the STAT3 signaling pathway and can be inhibited by a STAT3 inhibitor. Moreover, KH-type splicing regulatory protein (KHSRP) was proved to be regulated by lnc-SPRR2G-2 and to control the mRNA decay of psoriasis-related cytokines (<em>p</em> < 0.05). In summary, we reported the functions of lnc-SPRR2G-2 and KHSRP in psoriasis. Our findings provide new insights for the further exploration of the pathogenesis and treatment of psoriasis.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"76 ","pages":"Article 101967"},"PeriodicalIF":2.3,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000197/pdfft?md5=a578745942bbff469fe41fbcb19b0911&pid=1-s2.0-S0890850824000197-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141471956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Baicalein attenuates oxidative damage in mice haematopoietic cells through regulation of PDGFRβ","authors":"Huanying Ren, Jingyi Feng, Minglin Hong, Zhuang Liu, Daniel Muteb Muyey, Yaofang Zhang, Zhifang Xu, Yanhong Tan, Fanggang Ren, Jianmei Chang, Xiuhua Chen, Hongwei Wang","doi":"10.1016/j.mcp.2024.101966","DOIUrl":"10.1016/j.mcp.2024.101966","url":null,"abstract":"<div><p>Platelet-derived growth factor receptor β (PDGFRβ) plays a crucial role in murine haematopoiesis. Baicalein (BAI), a naturally occurring flavonoid, can alleviate disease damage through anti-oxidative, anti-apoptotic, and anti-inflammatory mechanisms. However, whether BAI attenuates oxidative damage in murine haematopoietic cells by PDGFRβ remains unexplored. In this study, we utilized a <em>tert</em>-butyl hydroperoxide (TBHP)-induced BaF3 cell injury model and an ionising radiation (IR)-induced mice injury model to investigate the impact of the presence or absence of PDGFRβ on the pharmacological effects of BAI. In addition, the BAI-PDGFRβ interaction was characterized by molecular docking and dynamics simulations. The results show that a specific concentration of BAI led to increased cell viability, reduced reactive oxygen species (ROS) content, upregulated nuclear factor erythroid 2-related factor 2 (NRF2) expression, and its downstream target genes heme oxygenase 1 (HO-1) and NAD(P)H Quinone Dehydrogenase 1 (NQO1), and activated protein kinase B (AKT) pathway in cells expressing PDGFRβ plasmid and experiencing damage. Similarly, BAI elevated lineage<sup>−</sup>Sca1<sup>+</sup>cKIT<sup>+</sup> (LSK) cell proportion, promoted haematopoietic restoration, enhanced NRF2-mediated antioxidant response in PDGFRβ<sup>+/+</sup> mice. However, despite BAI usage, PDGFRβ knockout mice (PDGFRβ<sup>−/−</sup>) showed lower LSK proportion and less antioxidant capacity than the total body irradiation (TBI) group. Furthermore, we demonstrated an interaction between BAI and PDGFRβ at the molecular level. Collectively, our results indicate that BAI attenuates oxidative stress injury and helps promote haematopoietic cell recovery through regulation of PDGFRβ.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"76 ","pages":"Article 101966"},"PeriodicalIF":3.3,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000185/pdfft?md5=ade0e912fe1ab928c0732f7842502cee&pid=1-s2.0-S0890850824000185-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review of local anesthetic-induced heart toxicity using human induced pluripotent stem cell-derived cardiomyocytes","authors":"Ting Jiang , Chao Ma , Zitong Wang , Yi Miao","doi":"10.1016/j.mcp.2024.101965","DOIUrl":"10.1016/j.mcp.2024.101965","url":null,"abstract":"<div><p>Local anesthetic (LA) cardiotoxicity is one of the main health problems in anesthesiology and pain management. This study reviewed the reported LA-induced cardiac toxicity types, risk factors, management, and mechanisms, with attention to the use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in heart toxicity research. Important scientific databases were searched to find relevant articles. We briefly assessed the reported cardiotoxic effects of different types of LA drugs, including ester- and amide-linked LA agents. Furthermore, cardiotoxic effects and clinical manifestations, strategies for preventing and managing LA-induced cardiotoxic effects, pharmacokinetics, pharmacodynamics, and sodium channel dynamics regarding individual variability and genetic influences were discussed in this review. The applications and importance of hiPSC-CMs cellular model for evaluating the cardiotoxic effects of LA drugs were discussed in detail. This review also explored hiPSC-CMs' potential in risk assessment, drug screening, and developing targeted therapies. The main mechanisms underlying LA-induced cardiotoxicity included perturbation in sodium channels, ROS production, and disorders in the immune system response due to the presence of LA drugs. Furthermore, drug-specific characteristics including pharmacokinetics and pharmacodynamics are important determinants after LA drug injection. In addition, individual patient factors such as age, comorbidities, and genetic variability emphasize the need for a personalized approach to mitigate risks and enhance patient safety. The strategies outlined for the prevention and management of LA cardiotoxicity underscore the importance of careful dosing, continuous monitoring, and the immediate availability of resuscitation equipment. This comprehensive review can be used to guide future investigations into better understanding LA cardiac toxicities and improving patient safety.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"76 ","pages":"Article 101965"},"PeriodicalIF":3.3,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000173/pdfft?md5=1cb3acb73e52161bab43535f6fb19949&pid=1-s2.0-S0890850824000173-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan-nan Chen , Ke-fan Zhou , Zhuang Miao , Yun-xia Chen , Jing-xia Cui , Su-wen Su
{"title":"Exosomes regulate doxorubicin resistance in breast cancer via miR-34a-5p/NOTCH1","authors":"Nan-nan Chen , Ke-fan Zhou , Zhuang Miao , Yun-xia Chen , Jing-xia Cui , Su-wen Su","doi":"10.1016/j.mcp.2024.101964","DOIUrl":"10.1016/j.mcp.2024.101964","url":null,"abstract":"<div><p>Breast cancer (BRCA) is the most common cancer among women. Adriamycin (ADR), also known as doxorubicin (Dox), is a commonly used chemotherapeutic agent for BRCA patients, however, the susceptibility of tumor cells to develop resistance to Dox has severely limited its clinical use. One new promising therapeutic target for breast cancer patients is exosomes. The objective of this study was to investigate the role of exosomes in regulating Dox resistance in BRCA.</p><p>In this study, the exosomes from both types of cells were extracted by differential centrifugation. The effect of exosomes on drug resistance was assessed by laser confocal microscopy, MTT assay, and qRT-PCR. The miRNA was transfected into cells using Lipofectamine 2000, which was then evaluated for downstream genes and changes in drug resistance.</p><p>Exosomes from MCF-7 cells (MCF-7/exo) and MCF-7/ADR cells (ADR/exo) were effectively extracted in this study. The ADR/exo was able to endocytose MCF-7 cells and make them considerably more resistant to Dox. Moreover, we observed a significant difference in miR-34a-5p expression in MCF-7/ADR and ADR/exo compared to MCF-7 and MCF-7/exo. Among the miR-34a-5p target genes, NOTCH1 displayed a clear change with a negative correlation. In addition, when miR-34a-5p expression was elevated in MCF-7/ADR cells, the expression of miR-34a-5p in ADR/exo was also enhanced alongside NOTCH1, implying that exosomes may carry miRNA into and out of cells and perform their function.</p><p>In conclusion, exosomes can influence Dox resistance in breast cancer cells by regulating miR-34a-5p/NOTCH1. These findings provide novel insights for research into the causes of tumor resistance and the enhancement of chemotherapy efficacy in breast cancer.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"76 ","pages":"Article 101964"},"PeriodicalIF":3.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000161/pdfft?md5=94235ca57a1305f99ffe8478ee06cad6&pid=1-s2.0-S0890850824000161-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claire E. Ryan , Thomas R. Salvetti , Ilana R. Baum , Brandon A. Figueroa , Brittany E. LeBere , Michael O. Alberti
{"title":"Single-tube Ptprc SNP genotyping of JAXBoy (CD45.1) and C57BL/6J (CD45.2) mice by endpoint PCR and gel electrophoresis","authors":"Claire E. Ryan , Thomas R. Salvetti , Ilana R. Baum , Brandon A. Figueroa , Brittany E. LeBere , Michael O. Alberti","doi":"10.1016/j.mcp.2024.101962","DOIUrl":"https://doi.org/10.1016/j.mcp.2024.101962","url":null,"abstract":"<div><p>Allelic variation at the <em>Ptprc</em> gene, which encodes the pan-leukocyte marker CD45/Ly5, is commonly exploited to track hematopoietic reconstitution by flow cytometry in mixed bone marrow chimera transplant experiments. Historically, this was accomplished using bone marrow from C57BL/6 (<em>Ptprc</em><sup>b</sup>/CD45.2/Ly5.2) and congenic B6.SJL-<em>Ptprc</em><sup>a</sup><em>Pepc</em><sup>b</sup>/Boy (<em>Ptprc</em><sup>a</sup>/CD45.1/Ly5.1) mice. Recently, the Jackson Laboratory directly CRISPR-engineered the <em>Ptprc</em><sup>a</sup> allele in C57BL/6J mice. This new isogenic strain, termed JAXBoy, differs from wild-type C57BL/6J mice by two nucleotides, compared to the biologically significant 37 megabase (Mb) SJL interval retained in B6.SJL-<em>Ptprc</em><sup>a</sup><em>Pepc</em><sup>b</sup>/Boy/J mice. Currently, <em>Ptprc</em>/CD45 variants are identified by flow cytometry or allele-specific real-time PCR, both of which require specialized workflows and equipment compared to standard genotyping of endpoint PCR products by gel electrophoresis. Here, we employed allele-specific oligonucleotides in conjunction with differential incorporation of a long non-specific oligo 5′-tail to allow for simultaneous identification of the <em>Ptprc</em><sup>a</sup> and <em>Ptprc</em><sup>b</sup> alleles using endpoint PCR and gel electrophoresis. This method allows for integration of <em>Ptprc</em> genotyping into standard genotyping workflows, which use a single set of thermocycling and gel electrophoresis conditions. Importantly, the strategy of primer placement and tail addition described here can be adapted to discriminate similar single- or multi-nucleotide polymorphisms at other genomic loci.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"75 ","pages":"Article 101962"},"PeriodicalIF":3.3,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000148/pdfft?md5=b94bb843a399787fdfbe6027d49946b4&pid=1-s2.0-S0890850824000148-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140842635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linjing Li , Yuting Gao , Boyi Yu , Jiahao Zhang , Guorong Ma , Xiaodong Jin
{"title":"Role of LncRNA H19 in tumor progression and treatment","authors":"Linjing Li , Yuting Gao , Boyi Yu , Jiahao Zhang , Guorong Ma , Xiaodong Jin","doi":"10.1016/j.mcp.2024.101961","DOIUrl":"https://doi.org/10.1016/j.mcp.2024.101961","url":null,"abstract":"<div><p>As one of the earliest discovered lncRNA molecules, lncRNA H19 is usually expressed in large quantities during embryonic development and is involved in cell differentiation and tissue formation. In recent years, the role of lncRNA H19 in tumors has been gradually recognized. Increasing evidence suggests that its aberrant expression is closely related to cancer development. LncRNA H19 as an oncogene not only promotes the growth, proliferation, invasion and metastasis of many tumors, but also develops resistance to treatment, affecting patients' prognosis and survival. Therefore, in this review, we summarise the extensive research on the involvement of lncRNA H19 in tumor progression and discuss how lncRNA H19, as a key target gene, affects tumor sensitivity to radiotherapy, chemotherapy and immunotherapy by participating in multiple cellular processes and regulating multiple signaling pathways, which provides a promising prospect for further research into the treatment of cancer.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"75 ","pages":"Article 101961"},"PeriodicalIF":3.3,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000136/pdfft?md5=2f4ba2884c69506c71b4bafbd63f8fdf&pid=1-s2.0-S0890850824000136-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140537035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Selin Gül Ünsal , Oğuzhan Yeni , Umut Büyük , Yelda Özden Çiftçi
{"title":"A novel method of multiplex SNP genotyping assay through variable fragment length allele-specific polymerase chain reaction: Multiplex VFLASP-ARMS","authors":"Selin Gül Ünsal , Oğuzhan Yeni , Umut Büyük , Yelda Özden Çiftçi","doi":"10.1016/j.mcp.2024.101960","DOIUrl":"https://doi.org/10.1016/j.mcp.2024.101960","url":null,"abstract":"<div><p>Variable Fragment Length Allele-Specific Polymerase Chain Reaction (VFLASP) and Amplification Refractory Mutation System (ARMS) are reliable methods for detecting allelic variations resulting from single base changes within the genome. Due to their widespread application, allele variations caused by Single Nucleotide Polymorphisms (SNPs) can be readily detected using allele-specific primers. In the context of the current study, VFLASP was combined with ARMS method as a novel strategy to enhance the efficacy of both techniques. Clinically important base variations within SNP regions used in the study were detected by a fragment analysis method. To validate the accuracy of the developed VFLASP-ARMS method, specifically designed synthetic sequences were tested using a capillary electrophoresis system. Allele-specific primers exhibit differences solely at the 3′ end based on the sequence of the SNP. Additionally, to increase the specificity of the primers, a base was intentionally added for incompatibility. Therefore, allele discrimination on fragment analysis has been made possible through the 3–6 bp differences in the amplicons.</p><p>With the optimization of the system, designed synthetic sequences provided reliable and reproducible results in wild-type, heterozygous, and homozygous genotypes using the VFLASP-ARMS method. Hence, our results demonstrated that VFLASP-ARMS method, offers a novel design methodology that can be included in the content of SNP genotyping assays.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"75 ","pages":"Article 101960"},"PeriodicalIF":3.3,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000124/pdfft?md5=db11ae6d7b3c07b3178516afd3f2f3c1&pid=1-s2.0-S0890850824000124-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140537034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaguang Hu , Yanan Gu , Yichen Song , Yuelei Zhao , Jiachen Wang , Junchi Ma , Fang Sui
{"title":"Differential expression and prognostic value of TLR4 in kidney renal clear cell carcinoma","authors":"Yaguang Hu , Yanan Gu , Yichen Song , Yuelei Zhao , Jiachen Wang , Junchi Ma , Fang Sui","doi":"10.1016/j.mcp.2024.101959","DOIUrl":"https://doi.org/10.1016/j.mcp.2024.101959","url":null,"abstract":"<div><p>Human Toll-like receptor (TLR) family plays a crucial role in immunity and cancer progression. However, the specific role of human Toll-like receptor 4 (TLR4) in kidney renal clear cell carcinoma (KIRC) remains obscure. Thus, we used single-cell RNA sequencing (RNA-seq) and bulk RNA-seq data combined with in vitro studies to evaluate the expression and prognostic value of TLR4 in KIRC. In our study, we observed that TLR4 was over expressed in KIRC tissues compared to normal renal tissues. And the expression of TLR4 was higher in macrophages/monocytes than other cell types. Besides, there is a close association between TLR4 expression and immune cell infiltration (Neutrophils, Macrophages, T cells and B cells) in KIRC. Immunohistochemical staining also showed that TLR4 was overexpressed in inflammatory infiltration renal tissue compared with normal tissue. Meanwhile, high expression of TLR4 exhibited correlations with improved survival, lower tumor grade and stage. Interestingly, the protective significance of TLR4 only showed in female patients (HR = 0.37, P < 0.01), other than male patients (HR = 0.71, P = 0.08) with KIRC. Consistently, KIRC samples with lymph node metastasis showed lower expression of TLR4. Knockdown of TLR4 in 786-O cell line increased cell proliferation and clonogenic capacity. In summary, this study found TLR4 could inhibit the progression of kidney cancer and was associated with improved survival in KIRC. The overexpression of TLR4 in macrophages and the close association between TLR4 and immune cell infiltration also underline the critical role of TLR4 in building the immune microenvironment for kidney cancer. These results may offer insights into the mechanism and immune microenvironment of kidney cancer.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"75 ","pages":"Article 101959"},"PeriodicalIF":3.3,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000112/pdfft?md5=8899e6ea060d0c2f2db23677d426a523&pid=1-s2.0-S0890850824000112-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140537033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo Yi , Juan Pan , Zhaoming Yang , Zemin Zhu , Yongkang Sun , Tao Guo , Zhijian Zhao
{"title":"Mesenchymal stem cell-derived exosomes promote tissue repair injury in rats with liver trauma by regulating gut microbiota and metabolism","authors":"Bo Yi , Juan Pan , Zhaoming Yang , Zemin Zhu , Yongkang Sun , Tao Guo , Zhijian Zhao","doi":"10.1016/j.mcp.2024.101958","DOIUrl":"10.1016/j.mcp.2024.101958","url":null,"abstract":"<div><h3>Objective</h3><p>The effects of mesenchymal stem cells (MSCs) and MSC-derived exosomes (MSC-exos) on serum metabolites and intestinal microbiota in rats after liver trauma were discussed.</p></div><div><h3>Methods</h3><p>Adult Wistar Albino rats were assigned into control, model (liver trauma), MSCs, and MSC-exos groups (n = 6). The study examined changes in the inflammatory environment in liver tissues were analyzed by histological examination and analysis of macrophage phenotypes. Alterations in serum metabolites were determined by untargeted metabonomics, and gut microbiota composition was characterized by 16S rDNA sequencing. Correlations between specific gut microbiota, metabolites, and inflammatory response were calculated using Spearman correlation analysis.</p></div><div><h3>Results</h3><p>Rats with liver trauma after MSCs and MSC-exos treatment exhibited attenuated inflammatory infiltration and necrosis in liver tissues. MSCs and MSC-exos treatment reduced the proportion of M1 macrophages, accompanied by a decrease in inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) levels. Furthermore, MSCs and MSC-exos treatment expanded the proportion of M2 macrophages, accompanied by an increase in arginase-1 (Arg-1) and interleukin-10 (IL-10) levels. The beneficial effects of MSC-exo treatment on rats with liver trauma were superior to those of MSC treatment. The composition and abundance of the gut microbiota and metabolites were altered in pathological rats, whereas MSC and MSC-exo intervention partially restored specific gut microbiota and metabolite alterations. At the phylum level, alterations in <em>Bacteroidota</em>, <em>Proteobacteria</em>, and <em>Verrucomicrobiota</em> were observed after MSC and MSC-exo intervention. At the genus level, <em>Intestinimonas</em>, <em>Alistipes</em>, <em>Aerococcus, Faecalibaculum</em>, and <em>Lachnospiraceae_ND3007_group</em> were the main differential microbiota. 6-Methylnicotinamide, N-Methylnicotinamide, Glutathione, oxidized, ISOBUTYRATE, ASCORBATE, EICOSAPENTAENOATE, GLYCEROL 3-PHOSPHATE, and Ascorbate radical were selected as important differential metabolites. There was a clear correlation between Ascorbate, <em>Intestinimonas</em>/<em>Faecalibaculum</em> and inflammatory cytokines.</p></div><div><h3>Conclusion</h3><p>MSC-exos promoted the repair of tissue damage in rats with liver trauma by regulating serum metabolites and intestinal microbiota, providing new insights into how MSC-exos reduced inflammation in rats with liver trauma.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"75 ","pages":"Article 101958"},"PeriodicalIF":3.3,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000100/pdfft?md5=dc40775420923a6f19eeabe1a0f3d88b&pid=1-s2.0-S0890850824000100-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140190337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Boyu Tan , Xueyao Jiang , Li Chen , Rongsheng Wang , Hongyan Wei
{"title":"Plasma exosomal miR-30a-5p inhibits osteogenic differentiation of bone marrow mesenchymal stem cells from a chronic unpredictable mild stress-induced depression rat model","authors":"Boyu Tan , Xueyao Jiang , Li Chen , Rongsheng Wang , Hongyan Wei","doi":"10.1016/j.mcp.2024.101957","DOIUrl":"10.1016/j.mcp.2024.101957","url":null,"abstract":"<div><p>With rising society stress, depression-induced osteoporosis is increasing. However, the mechanism involved is unclear. In this study, we explored the effect of plasma exosomal miRNAs on bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation in a chronic unpredictable mild stress (CUMS)-induced depression rat model. After 12 weeks of CUMS-induced depression, the pathological changes in the bone tissue and markers of osteogenic differentiation were tested by micro-computed tomography, hematoxylin-eosin staining, and quantitative real-time reverse transcription PCR (qRT-PCR). Plasma exosomes from rats were isolated and co-incubated with BMSCs for 14 d to detect the effect on osteogenic markers. Next-generation sequencing identified the miRNAs in the plasma exosomes, and the differential miRNAs were analyzed and verified by qRT-PCR. BMSCs were infected with lentivirus to upregulate miRNA-30a-5p and incubated in a medium that induced osteogenic differentiation for 14 d. The effect of miR-30a-5p on osteogenic differentiation was determined by qPCR and alizarin red staining. CUMS-induced depression rat model was established successfully, and exhibited reduced bone mass and damaged bone microstructure compared to that of the controls. The observed pathological changes suggested the occurrence of osteoporosis in the CUMS group, and the mRNA expression of osteogenic markers was also significantly reduced. Incubation of BMSCs with plasma exosomes from the CUMS group for 14 d resulted in a significant decrease in the expression of osteogenic markers. Twenty-five differentially expressed miRNAs in plasma exosomes were identified and upregulation of miR-30a-5p was observed to significantly inhibit the expression of osteogenic markers in BMSCs. Our findings contributed to a comprehensive understanding of the mechanism of osteoporosis caused by depression, and demonstrated the potential of miR-30a-5p as a novel biomarker or therapeutic target for the treatment of osteoporosis.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"75 ","pages":"Article 101957"},"PeriodicalIF":3.3,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000094/pdfft?md5=061456e5f4c886414dddbff381d2ae2c&pid=1-s2.0-S0890850824000094-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}