Molecular and Cellular Probes最新文献

筛选
英文 中文
Identification of circRNA-mediated competing endogenous RNA network involved in the development of cervical cancer. 鉴定参与宫颈癌发展的 circRNA 介导的竞争性内源性 RNA 网络。
IF 2.3 3区 生物学
Molecular and Cellular Probes Pub Date : 2024-09-20 DOI: 10.1016/j.mcp.2024.101984
Shaosheng Lou, Wang Yang, Qian Zhao, Yunshan Ouyang, Lingling Cao, Chen Lin
{"title":"Identification of circRNA-mediated competing endogenous RNA network involved in the development of cervical cancer.","authors":"Shaosheng Lou, Wang Yang, Qian Zhao, Yunshan Ouyang, Lingling Cao, Chen Lin","doi":"10.1016/j.mcp.2024.101984","DOIUrl":"https://doi.org/10.1016/j.mcp.2024.101984","url":null,"abstract":"<p><strong>Background: </strong>The abnormal expression of circRNA may contribute to the progression of cervical cancer by influencing the biological processes.</p><p><strong>Aim: </strong>This study aimed to identify the differentially expressed circRNAs in cervical cancer and validate the circ_0008193 ceRNA network in cervical cancer cells.</p><p><strong>Methods: </strong>Using the absolute log2 value of fold change > 1 and p-value of < 0.05, the differentially expressed circRNAs were obtained from GSE102686 and GSE113696 from cervical cancer tissues and cervical cancer cells with the help of the GEO2R tool. Downstream miRNAs and mRNAs were predicted using relevant informatics databases. The circRNA-miRNA-mRNA interaction network was conducted with the assistance of Cytoscape. Circ_0008193-miR-182-5p-PTEN axis was validated with expression level and cell function using RT-qPCR, a dual-luciferase reporter assay, and cellular experiments.</p><p><strong>Results: </strong>GSE102686 and GSE113696 databases overlapped 7 differentially expressed circRNAs and five circRNAs have the same expression pattern. Based on the literature and expression pattern, a circRNA-miRNA-mRNA network was conducted. The circ_0008193, miR-182-5p, and PTEN expression patterns were downregulation, upregulation, and downregulation, respectively. Overexpressed circ_0008193 suppressed proliferation, migration, and invasion of cervical cancer cells. MiR-182-5p diminished the inhibitory influence of circ_0008193 on cellular behaviors, while PTEN counteracted the effect of miR-182-5p.</p><p><strong>Conclusion: </strong>This investigation revealed the existence of a circRNA-miRNA-mRNA network in cervical cancer, and preliminary verified the function of circ_0008193-miR-182-5p-PTEN axis in cervical cancer cells, which offers additional guidance on investigating the molecular mechanisms of cervical cancer.</p>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prognostic prediction of gastric cancer based on H&E findings and machine learning pathomics. 基于 H&E 检查结果和机器学习病理组学的胃癌预后预测。
IF 2.3 3区 生物学
Molecular and Cellular Probes Pub Date : 2024-09-17 DOI: 10.1016/j.mcp.2024.101983
Guoda Han, Xu Liu, Tian Gao, Lei Zhang, Xiaoling Zhang, Xiaonan Wei, Yecheng Lin, Bohong Yin
{"title":"Prognostic prediction of gastric cancer based on H&E findings and machine learning pathomics.","authors":"Guoda Han, Xu Liu, Tian Gao, Lei Zhang, Xiaoling Zhang, Xiaonan Wei, Yecheng Lin, Bohong Yin","doi":"10.1016/j.mcp.2024.101983","DOIUrl":"https://doi.org/10.1016/j.mcp.2024.101983","url":null,"abstract":"<p><strong>Aim: </strong>In this research, we aimed to develop a model for the accurate prediction of gastric cancer based on H&E findings combined with machine learning pathomics.</p><p><strong>Methods: </strong>Transcriptome data, pathological images, and clinical data from 443 cases were retrieved from TCGA (The Cancer Genome Atlas Program) for survival analysis. The images were segmented using the Otsu algorithm, and features were extracted using the PyRadiomics package. Subsequently, the cases were randomly divided into a training cohort of 165 cases and a validation cohort of 69 cases. Features selected via minimum Redundancy - Maximum Relevance (mRMR)- recursive feature elimination (RFE) screening were used to train a model using the Gradient Boosting Machine (GBM) algorithm. The model's performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC), calibration curves, and decision curves. Additionally, the correlation between the Pathomics score (PS) and immune genes was examined.</p><p><strong>Results: </strong>In the multivariate analysis, heightened infiltration of activated CD4 memory T cells was strongly associated with improved overall survival (HR = 0.505, 95% CI = 0.342-0.745, P < 0.001). The pathomic model, exhibiting robust predictive capability, demonstrated impressive AUC values of 0.844 and 0.750 in both study cohorts. The Decision Curve Analysis (DCA) unequivocally underscored the model's exceptional clinical utility. In a subsequent multivariate analysis, heightened infiltration of the PS also emerged as a significant protective factor for overall survival (HR = 0.506, 95% CI = 0.329-0.777, P = 0.002).</p><p><strong>Conclusion: </strong>The pathomic model based on H&E slides for predicting the infiltration degree of activated CD4 memory T cells, along with integrated bioinformatics analysis elucidating potential molecular mechanisms, offers novel prognostic indicators for the precise stratification and individualized prognosis of gastric cancer patients.</p>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic switch selectively kills hepatocellular carcinoma cell based on microRNA and tissue-specific promoter 基于 microRNA 和组织特异性启动子的基因开关可选择性地杀死肝癌细胞。
IF 2.3 3区 生物学
Molecular and Cellular Probes Pub Date : 2024-08-31 DOI: 10.1016/j.mcp.2024.101981
{"title":"Genetic switch selectively kills hepatocellular carcinoma cell based on microRNA and tissue-specific promoter","authors":"","doi":"10.1016/j.mcp.2024.101981","DOIUrl":"10.1016/j.mcp.2024.101981","url":null,"abstract":"<div><p>The clinical treatment of hepatocellular carcinoma (HCC) is still a heavy burden worldwide. Intracellular microRNAs (miRNAs) commonly express abnormally in cancers, thus they are potential therapeutic targets for cancer treatment. miR-21 is upregulated in HCC whereas miR-122 is enriched in normal hepatocyte but downregulated in HCC. In our study, we first generated a reporter genetic switch compromising of miR-21 and miR-122 sponges as sensor, green fluorescent protein (GFP) as reporter gene and L7Ae:K-turn as regulatory element. The reporter expression was turned up in miR-21 enriched environment while turned down in miR-122 enriched environment, indicating that the reporter switch is able to respond distinctly to different miRNA environment. Furthermore, an AAT promoter, which is hepatocyte-specific, is applied to increase the specificity to hepatocyte. A killing switch with AAT promoter and an apoptosis-inducing element, Bax, in addition to miR-21 and miR-122 significantly inhibited cell viability in Huh-7 by 70 % and in HepG2 by 60 %. By contrast, cell viability was not affected in five non-HCC cells. Thus, we provide a novel feasible strategy to improve the safety of miRNA-based therapeutic agent to cancer.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000331/pdfft?md5=f411ef273941f5ad14203bbffa219364&pid=1-s2.0-S0890850824000331-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MiR-125b-1-3p-mediated UQCRB inhibition facilitates mitochondrial metabolism disorders in a rat cellular senescencemodel 在大鼠细胞衰老模型中,MiR-125b-1-3p 介导的 UQCRB 抑制促进了线粒体代谢紊乱。
IF 2.3 3区 生物学
Molecular and Cellular Probes Pub Date : 2024-08-14 DOI: 10.1016/j.mcp.2024.101979
{"title":"MiR-125b-1-3p-mediated UQCRB inhibition facilitates mitochondrial metabolism disorders in a rat cellular senescencemodel","authors":"","doi":"10.1016/j.mcp.2024.101979","DOIUrl":"10.1016/j.mcp.2024.101979","url":null,"abstract":"<div><h3>Backgroud</h3><p>Cellular senescence is closely related to human aging and multiple aging-related diseases, and impaired mitochondrial energy metabolism is an important mechanism of cellular senescence. Notably, microRNA-125b-1-3p (miR-125b-1-3p) is a microRNA (miR, miRNA) that may be associated with mitochondrial energy metabolism. Ubiquinol-cytochrome c reductase binding protein (<em>UQCRB</em>) gene, predicted by bioinformatics tools to be targeted by miR-125b-1-3p, could serve as a novel diagnostic indicator and therapeutic target for cellular senescence-associated diseases, as well as a new idea for delaying aging.</p></div><div><h3>Methods</h3><p>First, the dual-luciferase reporter gene assay was used to identify <em>UQCRB</em> as a target gene of miR-125b-1-3p. Next, miRNA interference technology was conducted to verify that miR-125b-1-3p could negatively regulate the expression of <em>UQCRB</em>. Subsequently, the influence of miR-125b-1-3p on mitochondrial energy metabolism function was explored by observing the internal substances and ultrastructure of mitochondria. Further, an <em>in vitro</em> model of cellular senescence was established in rat renal tubular epithelial cells, which was characterized by detecting senescence-related proteins p16 and p21 and beta-galactosidase (β-gal) activity. Finally, the mitochondrial energy metabolism function of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-incubated cells was explored.</p></div><div><h3>Results</h3><p>The experimental results revealed that miR-125b-1-3p affected the mitochondrial energy metabolism function by inhibiting the target gene <em>UQCRB.</em> Meanwhile, the level of mitochondrial energy metabolism function in H<sub>2</sub>O<sub>2</sub>-incubated senescent cells was lower than that in normal cells.</p></div><div><h3>Conclusion</h3><p>In this study, we identified the target gene, <em>UQCRB</em>, of miR-125b-1-3p, and demonstrated its role in the pathway of mitochondrial energy metabolism, as well as its possible effect on cellular senescence through this pathway. The ameliorative effects on cellular senescence can be further explored in subsequent studies to provide additional options for delaying aging or treating aging-related diseases.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000318/pdfft?md5=2f164a8a41a33e01fed76a3bd1c7f0e6&pid=1-s2.0-S0890850824000318-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A versatile and efficient method for detecting tRNA-derived fragments 检测 tRNA 衍生片段的多功能高效方法。
IF 2.3 3区 生物学
Molecular and Cellular Probes Pub Date : 2024-08-12 DOI: 10.1016/j.mcp.2024.101975
{"title":"A versatile and efficient method for detecting tRNA-derived fragments","authors":"","doi":"10.1016/j.mcp.2024.101975","DOIUrl":"10.1016/j.mcp.2024.101975","url":null,"abstract":"<div><p>Recently, it has been discovered surprisingly that tRNA can be cleaved into specific small fragments under certain conditions. Most importantly, these tRNA-derived fragments (tRFs) participate in the regulation of gene expression, playing pivotal roles in various physiological and pathological processes and thus attracting widespread attention. Detecting tRF expression in tissues and cells often involves using tRF-specific stem-loop primers for reverse transcription. However, the high specificity offered by this method limits it to transcribing only one specific tRF sequence per reaction, necessitating separate reverse transcription and qPCR steps for multiple tRFs, leading to substantially increased time and resource consumption. This becomes especially challenging in precious samples with limited RNA availability. To address these issues, there is an urgent need for a universal and cost-effective tRF identification method. This study introduces a versatile tRF detection approach based on the uniform polyadenylation of all tRFs, allowing reverse transcription with a universal oligo(dT) primer. This method enables simultaneous reverse transcription of all target tRFs in one reaction, greatly facilitating subsequent qPCR analysis. Furthermore, it demonstrates exceptional sensitivity and specificity, offering significant value in tRF-related research.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000276/pdfft?md5=3915668f148fff980843d3d63acb916c&pid=1-s2.0-S0890850824000276-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New potential diagnostic markers for verrucous hyperplasia and verrucous carcinoma based on RNA-sequencing data 基于 RNA 序列数据的疣状增生和疣状癌潜在诊断新标记。
IF 2.3 3区 生物学
Molecular and Cellular Probes Pub Date : 2024-08-12 DOI: 10.1016/j.mcp.2024.101980
{"title":"New potential diagnostic markers for verrucous hyperplasia and verrucous carcinoma based on RNA-sequencing data","authors":"","doi":"10.1016/j.mcp.2024.101980","DOIUrl":"10.1016/j.mcp.2024.101980","url":null,"abstract":"<div><p>Verrucous carcinoma (VC) is a rare subtype of squamous cell carcinoma (SCC) characterized by its histological presentation as a low-grade tumor with no potential for metastasis, setting it apart from invasive SCC. However, distinguishing VC from its benign counterpart, verrucous hyperplasia (VH), is challenging due to their clinical and morphological similarities. Despite the importance of accurate diagnosis for determining treatment strategies, diagnosis for of VH and VC relied only on lesion recurrence after resection. To address this challenge, we generated RNA profiling data from tissue samples of VH and VC patients to identify novel diagnostic markers. We analyzed differentially expressed (DE) mRNA and long non-coding RNA (lncRNA) in tissue samples from VH and VC patients. Additionally, ChIP-X Enrichment Analysis 3 (ChEA3) was conducted to identify the top five transcription factors potentially regulating the expression of DE mRNAs in VH and VC. Our analysis of mRNA and lncRNA expression profiles in VH and VC provides insights into the underlying molecular characteristics of these diseases and offers potential new diagnostic markers. The identification of specific DE genes and lncRNAs may enable clinicians to more accurately differentiate between VH and VC, leading to better treatment choices.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S089085082400032X/pdfft?md5=6ce56ca8e894161482b951df26676cb7&pid=1-s2.0-S089085082400032X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LncRNA PCIF1 promotes aerobic glycolysis in A549/DDP cells by competitively binding miR-326 to regulate PKM expression LncRNA PCIF1 通过竞争性结合 miR-326 来调控 PKM 的表达,从而促进 A549/DDP 细胞的有氧糖酵解。
IF 2.3 3区 生物学
Molecular and Cellular Probes Pub Date : 2024-08-07 DOI: 10.1016/j.mcp.2024.101977
{"title":"LncRNA PCIF1 promotes aerobic glycolysis in A549/DDP cells by competitively binding miR-326 to regulate PKM expression","authors":"","doi":"10.1016/j.mcp.2024.101977","DOIUrl":"10.1016/j.mcp.2024.101977","url":null,"abstract":"<div><h3>Objective</h3><p>Utilizing transcriptome analysis to investigate the mechanisms and therapeutic approaches for cisplatin resistance in non-small cell lung cancer (NSCLC).</p></div><div><h3>Methods</h3><p>Firstly, the biological characters of A549 cells and A549/DDP cells were detected by RNA sequencing, CCK-8 and hippocampal energy analyzer. Then, the differential Genes were functionally enriched by GO and KEGG and the competitive endogenous RNA network map was constructed. Finally, the effects of the predicted biogenesis pathway on the biological functions of A549/DDP cells were verified by in vitro and in vivo experiments.</p></div><div><h3>Result</h3><p>The differentially transcribed genes of A549 and A549/DDP cells were analyzed by enrichment analysis and cell biological characteristics detection. The results showed that A549/DDP cells showed significantly increased resistance to cisplatin, glucose metabolism signaling pathway and glycolysis levels compared with A549 cells. Among glycolysis-related transcription genes, PKM had the most significant difference Fold Change is 8. LncRNA PCIF1 is a new marker of A549/DDP cells and can be used as a molecular sponge to regulate the expression of PKM. LncRNA PCIF1 targets miR-326 to induce PKM expression, promote glycolysis level, and enhance the resistance of A549/DDP cells to cisplatin.</p></div><div><h3>Conclusion</h3><p>LncRNA PCIF1 as biomarkers of A549/DDP cells, higher expression can induce the PKM, promote cell glycolysis, lead to the occurrence of cisplatin resistance. LncRNA PCIF1 can be considered as a potential target for treating cisplatin-resistant NSCLC.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S089085082400029X/pdfft?md5=f5d1e132c9ded44bf4ac17a2e707db00&pid=1-s2.0-S089085082400029X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TRIM47 inhibits cisplatin chemosensitivity and endoplasmic reticulum stress-induced apoptosis of ovarian cancer cells TRIM47 可抑制顺铂化学敏感性和内质网应激诱导的卵巢癌细胞凋亡。
IF 2.3 3区 生物学
Molecular and Cellular Probes Pub Date : 2024-08-03 DOI: 10.1016/j.mcp.2024.101978
{"title":"TRIM47 inhibits cisplatin chemosensitivity and endoplasmic reticulum stress-induced apoptosis of ovarian cancer cells","authors":"","doi":"10.1016/j.mcp.2024.101978","DOIUrl":"10.1016/j.mcp.2024.101978","url":null,"abstract":"<div><p>Ovarian cancer (OC) is the fifth most common cause of death in women worldwide. Chemoresistance is a key reason for treatment failure, causing high mortality. As a member of the tripartite motif-containing (TRIM) protein family, tripartite motif 47 (TRIM47) plays a vital role in the carcinogenesis and drug resistance of various cancers. This study investigated the impact and mechanisms of TRIM47 on cisplatin (DDP) chemosensitivity and apoptosis in OC. OC cell viability was assessed with a cell counting kit-8 assay and OC cell apoptosis was assessed using flow cytometry, caspase-3 and caspase-9 activity, and Bax and Bcl-2 expression assays while gene and protein expression were assessed using qRT–PCR and Western blot assays. The expression of TRIM47 was significantly increased in both DDP-resistant tissues from patients with OC tissues and in cancer cell lines compared with that in normal tissue or parental cell lines. The increased level of TRIM47 correlated with poor prognosis in patients with OC. Functional assays demonstrated that TRIM47 promoted DDP resistance both in vitro and in vivo. The increased viability and reduced apoptosis of OC cells induced by TRIM47 can be rescued by the endoplasmic reticulum (ER) stress–inducer tunicamycin, suggesting that TRIM47 inhibits OC cell apoptosis by suppressing ER stress. Therefore, TRIM47 may be targeted as a therapeutic strategy for DDP resistance in OC.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000306/pdfft?md5=e2e2a5f7397a5e10237b67c8397fdd1b&pid=1-s2.0-S0890850824000306-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of the Idylla microsatellite instability test in endometrial cancer 子宫内膜癌 Idylla 微卫星不稳定性检测的性能。
IF 2.3 3区 生物学
Molecular and Cellular Probes Pub Date : 2024-07-31 DOI: 10.1016/j.mcp.2024.101976
{"title":"Performance of the Idylla microsatellite instability test in endometrial cancer","authors":"","doi":"10.1016/j.mcp.2024.101976","DOIUrl":"10.1016/j.mcp.2024.101976","url":null,"abstract":"<div><h3>Context</h3><p>DNA mismatch repair (MMR) deficiency (dMMR) testing is now recommended in endometrial cancer. Defect identification in the molecules participating in this pathway, or the presence of microsatellite instability, are commonly employed for this purpose. Novel methods are continuously evolving to report dMMR/microsatellite instability and to easily perform routine diagnoses.</p></div><div><h3>Objective</h3><p>The main aim of this study was to compare the concordance of the Idylla microsatellite instability test for the identification of dMMR endometrial cancer samples defined by immunohistochemistry and MMR genomic status.</p></div><div><h3>Design</h3><p>We applied the Idylla MSI test to 126 early-stage endometrial cancer cases with MMR testing by immunohistochemistry and genomic characterization (methylation in <em>MLH1</em> and sequence alterations in <em>MLH1</em>, <em>PMS2</em>, <em>MSH2</em> and <em>MSH6</em>). Individual markers and overall specific performance indicators were explored.</p></div><div><h3>Results</h3><p>The Idylla platform achieved a higher global concordance rate with MMR genomic status than with immunohistochemistry (75 % and 66 %, respectively). Sensitivity and specificity are also higher (75 % vs 66 % and 96 % vs 90 %, respectively). Clustering analysis split the patients into 2 well-differentiated clusters, the pMMR and the dMMR group, represented by MLH1/PMS2 loss and the <em>MLH1</em> methylated promoter. Overall, immunohistochemistry and MMR genomic status identified more dMMR cases than did the Idylla test, although correlations were improved with a modified Idylla test cut-off.</p></div><div><h3>Conclusions</h3><p>Performance of the Idylla test was better correlated with MMR genomic status than MMR immunohistochemistry status, which improved with a modified test cut-off. Further studies are needed to confirm the cut-off accuracy.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000288/pdfft?md5=6e130c00b8c26414f85101ba16d31a20&pid=1-s2.0-S0890850824000288-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARS-CoV-2 replication and drug discovery SARS-CoV-2 复制与药物研发。
IF 2.3 3区 生物学
Molecular and Cellular Probes Pub Date : 2024-07-24 DOI: 10.1016/j.mcp.2024.101973
{"title":"SARS-CoV-2 replication and drug discovery","authors":"","doi":"10.1016/j.mcp.2024.101973","DOIUrl":"10.1016/j.mcp.2024.101973","url":null,"abstract":"<div><p>The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CL<sup>pro</sup> or Papain-like protease, PL<sup>pro</sup>) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000252/pdfft?md5=ce4435cfc161a5a1c58308335aa8f8a2&pid=1-s2.0-S0890850824000252-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信