Bashdar Mahmud Hussen , Snur Rasool Abdullah , Hazha Jamal Hidayat , Mark C. Glassy , Arash Safarzadeh , Alireza Komaki , Majid Samsami , Mohammad Taheri
{"title":"CRISPR/Cas as a tool to overcome drug resistance in cancer: From challenge to opportunity","authors":"Bashdar Mahmud Hussen , Snur Rasool Abdullah , Hazha Jamal Hidayat , Mark C. Glassy , Arash Safarzadeh , Alireza Komaki , Majid Samsami , Mohammad Taheri","doi":"10.1016/j.mcp.2025.102052","DOIUrl":null,"url":null,"abstract":"<div><div>Drug resistance remains a significant challenge in cancer therapy, often resulting in treatment failure, tumor progression, and metastasis. The underlying resistance mechanisms—including genetic mutations, epigenetic alterations, and modifications in drug efflux pathways—are complex and not yet fully understood. This review explores the application of CRISPR-Cas gene editing technology in understanding and overcoming drug resistance in cancer. It focuses on how CRISPR can identify and target resistance-associated genes to restore drug sensitivity. CRISPR-based approaches enable precise genetic modifications that offer new insights into the molecular basis of drug resistance. The technology has shown promise in dissecting resistance mechanisms and developing targeted therapeutic strategies. Nevertheless, key limitations such as inefficient delivery systems, off-target effects, and limited specificity hinder clinical translation. Current efforts focus on improving guide RNA design, creating more effective delivery vectors, and integrating CRISPR with existing treatments. CRISPR-Cas technology holds significant potential to address drug resistance in cancer by enabling targeted genetic interventions. Continued advancements are required to enhance its safety, specificity, and delivery, paving the way for its integration into future clinical applications.</div></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"84 ","pages":"Article 102052"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890850825000453","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Drug resistance remains a significant challenge in cancer therapy, often resulting in treatment failure, tumor progression, and metastasis. The underlying resistance mechanisms—including genetic mutations, epigenetic alterations, and modifications in drug efflux pathways—are complex and not yet fully understood. This review explores the application of CRISPR-Cas gene editing technology in understanding and overcoming drug resistance in cancer. It focuses on how CRISPR can identify and target resistance-associated genes to restore drug sensitivity. CRISPR-based approaches enable precise genetic modifications that offer new insights into the molecular basis of drug resistance. The technology has shown promise in dissecting resistance mechanisms and developing targeted therapeutic strategies. Nevertheless, key limitations such as inefficient delivery systems, off-target effects, and limited specificity hinder clinical translation. Current efforts focus on improving guide RNA design, creating more effective delivery vectors, and integrating CRISPR with existing treatments. CRISPR-Cas technology holds significant potential to address drug resistance in cancer by enabling targeted genetic interventions. Continued advancements are required to enhance its safety, specificity, and delivery, paving the way for its integration into future clinical applications.
期刊介绍:
MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.