Pedosphere最新文献

筛选
英文 中文
Co-incorporation of Chinese milk vetch (Astragalus sinicus L.) and chemical fertilizers alters microbial functional genes supporting short-time scale positive nitrogen priming effects in paddy soils 黄芪和化肥的联合施用改变了水稻土中支持短时正氮启动效应的微生物功能基因
IF 5.7 2区 农林科学
Pedosphere Pub Date : 2024-06-01 DOI: 10.1016/j.pedsph.2023.04.002
Limin WANG , Chunmei HE , Dongfeng HUANG , Juhua YU , Cailing LIU , Qinghua LI , Yibin HUANG , Juan LI , Fei WANG
{"title":"Co-incorporation of Chinese milk vetch (Astragalus sinicus L.) and chemical fertilizers alters microbial functional genes supporting short-time scale positive nitrogen priming effects in paddy soils","authors":"Limin WANG ,&nbsp;Chunmei HE ,&nbsp;Dongfeng HUANG ,&nbsp;Juhua YU ,&nbsp;Cailing LIU ,&nbsp;Qinghua LI ,&nbsp;Yibin HUANG ,&nbsp;Juan LI ,&nbsp;Fei WANG","doi":"10.1016/j.pedsph.2023.04.002","DOIUrl":"10.1016/j.pedsph.2023.04.002","url":null,"abstract":"<div><p>Nitrogen (N) priming is a microbially mediated biochemical process as affected by different incorporation practices. However, little information is known about the microbial mechanisms driving the response of N priming to co-operation of Chinese milk vetch (CMV, <em>Astragalus sinicus</em> L.) and different rates of chemical fertilizers in paddy soils in South China. Here, an anaerobic incubation experiment was conducted to study N priming effects (PE) and their relationships with soil microbial functional genes after CMV incorporation alone (M), co-incorporation of CMV with 100% (normal dosage) chemical fertilizers (MC100), and co-incorporation of CMV with 80% chemical fertilizers (MC80). Co-incorporation of CMV and chemical fertilizers enhanced the short-time scale (the first 20 d of incubation) positive PE of N, while no significant differences existed among the three treatments on day 60 or 90 of incubation (<em>P</em> &gt; 0.05). Compared with the M treatment, gross priming effect (GPE) in the MC100 and MC80 treatments significantly increased by 34.0% and 31.3%, respectively, and net priming effect (NPE) increased by 47.7% and 47.8%, respectively, during the first 20 d of incubation (<em>P</em> &lt; 0.05). This was likely attributed to soil nutrient availability and added substrate quality. The MC100 and MC80 treatments increased the <em>gdhA</em> gene abundance by 5.0% and 9.8%, increased the <em>gdh2</em> gene abundance by 12.7% and 45.7%, and increased the <em>nasB</em> gene abundance by 9.5% and 41.4%, respectively, in comparison with the M treatment on day 20 of incubation. Correlation analyses indicated that soil microbial functional genes involved in N mineralization (<em>gdhA</em> and <em>gdh2</em>), assimilatory nitrate reduction (<em>nasB</em>), and nitrification (<em>amoB</em>) were significantly correlated with N priming under different incorporation practices during the incubation period (<em>P</em> &lt; 0.05). Thus, co-incorporation of CMV and chemical fertilizers can regulate soil microbial community functional gene structure, which may accelerate mineralization and assimilatory nitrate reduction and inhibit nitrification, thereby increasing the short-term positive PE of N in the present study.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 3","pages":"Pages 567-576"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46554249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining minimum sample size for the conditioned Latin hypercube sampling algorithm 确定条件拉丁超立方抽样算法的最小样本量
IF 5.7 2区 农林科学
Pedosphere Pub Date : 2024-06-01 DOI: 10.1016/j.pedsph.2022.09.001
Daniel D. SAURETTE , Asim BISWAS , Richard J. HECK , Adam W. GILLESPIE , Aaron A. BERG
{"title":"Determining minimum sample size for the conditioned Latin hypercube sampling algorithm","authors":"Daniel D. SAURETTE ,&nbsp;Asim BISWAS ,&nbsp;Richard J. HECK ,&nbsp;Adam W. GILLESPIE ,&nbsp;Aaron A. BERG","doi":"10.1016/j.pedsph.2022.09.001","DOIUrl":"10.1016/j.pedsph.2022.09.001","url":null,"abstract":"<div><p>In digital soil mapping (DSM), a fundamental assumption is that the spatial variability of the target variable can be explained by the predictors or environmental covariates. Strategies to adequately sample the predictors have been well documented, with the conditioned Latin hypercube sampling (cLHS) algorithm receiving the most attention in the DSM community. Despite advances in sampling design, a critical gap remains in determining the number of samples required for DSM projects. We propose a simple workflow and function coded in R language to determine the minimum sample size for the cLHS algorithm based on histograms of the predictor variables using the Freedman-Diaconis rule for determining optimal bin width. Data preprocessing was included to correct for multimodal and non-normally distributed data, as these can affect sample size determination from the histogram. Based on a user-selected quantile range (QR) for the sample plan, the densities of the histogram bins at the upper and lower bounds of the QR were used as a scaling factor to determine minimum sample size. This technique was applied to a field-scale set of environmental covariates for a well-sampled agricultural study site near Guelph, Ontario, Canada, and tested across a range of QRs. The results showed increasing minimum sample size with an increase in the QR selected. Minimum sample size increased from 44 to 83 when the QR increased from 50% to 95% and then increased exponentially to 194 for the 99% QR. This technique provides an estimate of minimum sample size that can be used as an input to the cLHS algorithm.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 3","pages":"Pages 530-539"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48010360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remediation of amide pesticide-polluted soils by combined solarization and ozonation treatment 通过日晒和臭氧联合处理法修复受酰胺类农药污染的土壤
IF 5.7 2区 农林科学
Pedosphere Pub Date : 2024-06-01 DOI: 10.1016/j.pedsph.2023.03.003
Isabel GARRIDO, Carmen M. MARTÍNEZ, Pilar FLORES, Pilar HELLÍN, Fulgencio CONTRERAS, José FENOLL
{"title":"Remediation of amide pesticide-polluted soils by combined solarization and ozonation treatment","authors":"Isabel GARRIDO,&nbsp;Carmen M. MARTÍNEZ,&nbsp;Pilar FLORES,&nbsp;Pilar HELLÍN,&nbsp;Fulgencio CONTRERAS,&nbsp;José FENOLL","doi":"10.1016/j.pedsph.2023.03.003","DOIUrl":"10.1016/j.pedsph.2023.03.003","url":null,"abstract":"<div><p>Agriculture has a close relationship with nature, but it can also be the source of negative and permanent environmental effects. The use of pesticides in modern agriculture is a common practice, but their side effects on the environment cannot be disregarded. In this study, we evaluated a combination of solarization and ozonation techniques for the elimination of six amide pesticides (boscalid, chlorantraniliprole, cyflufenamid, fluopyram, napropamide, and propyzamide) in soil. Initial experiments were performed with four different soils to assess the efficiency of this methodology at different soil temperatures and ozone dosages under laboratory conditions, and then a greenhouse pot experiment was conducted under controlled conditions during summer. Fifty days after the onset of the experiments, higher degradation percentages of amide pesticides were observed in ozonized soils than in other treated soils, particularly when ozone was applied at 10 cm soil depth. The results show that the utilization of ozonation, along with solarization, represents a valid method for degrading residues of the studied pesticides and suggest that this combined technology may be a promising tool for remediating pesticide-polluted soils.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 3","pages":"Pages 641-651"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135837740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DMPP mitigates N2O and NO productions by inhibiting ammonia-oxidizing bacteria in an intensified vegetable field under different temperature and moisture regimes DMPP在不同温度和湿度条件下通过抑制强化菜地中氨氧化细菌来减少N2O和NO的产生
IF 5.7 2区 农林科学
Pedosphere Pub Date : 2024-06-01 DOI: 10.1016/j.pedsph.2023.03.018
Xi ZHANG , Xintong XU , Chenyuan WANG , Qianqian ZHANG , Yubing DONG , Zhengqin XIONG
{"title":"DMPP mitigates N2O and NO productions by inhibiting ammonia-oxidizing bacteria in an intensified vegetable field under different temperature and moisture regimes","authors":"Xi ZHANG ,&nbsp;Xintong XU ,&nbsp;Chenyuan WANG ,&nbsp;Qianqian ZHANG ,&nbsp;Yubing DONG ,&nbsp;Zhengqin XIONG","doi":"10.1016/j.pedsph.2023.03.018","DOIUrl":"10.1016/j.pedsph.2023.03.018","url":null,"abstract":"<div><p>Vegetable soils with high nitrogen input are major sources of nitrous oxide (N<sub>2</sub>O) and nitric oxide (NO), and incorporation of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) into soils has been documented to effectively reduce emissions. However, the efficiency of DMPP in terms of soil N<sub>2</sub>O and NO mitigations varies greatly depending on soil temperature and moisture levels. Thus, further evaluations of DMPP efficiency in diverse environments are required to encourage widespread application. A laboratory incubation study (28 d) was established to investigate the interactive effects of DMPP, temperature (15, 25, and 35 °C), and soil moisture (55% and 80% of water-holding capacity (WHC)) on net nitrification rate, N<sub>2</sub>O and NO productions, and gene abundances of nitrifiers and denitrifiers in an intensive vegetable soil. Results showed that incubating soil with 1% DMPP led to partial inhibition of the net nitrification rate and N<sub>2</sub>O and NO productions, and the reduction percentage of N<sub>2</sub>O production was higher than that of NO production (69.3% <em>vs</em>. 38.2%) regardless of temperature and soil moisture conditions. The increased temperatures promoted the net nitrification rate but decreased soil N<sub>2</sub>O and NO productions. Soil moisture influenced NO production more than N<sub>2</sub>O production, decreasing with the increased moisture level (80%). The inhibitory effect of DMPP on cumulative N<sub>2</sub>O and NO productions decreased with increased temperatures at 55% WHC. Conversely, the inhibitory effect of DMPP on cumulative N<sub>2</sub>O production increased with increased temperatures at 80% WHC. Based on the correlation analyses and automatic linear modeling, the mitigation of both N<sub>2</sub>O and NO productions from the soil induced by DMPP was attributed to the decreases in ammonia-oxidizing bacteria (AOB) <em>amoA</em> gene abundance and NO<sub>2</sub><sup>-</sup>-N concentration. Overall, our study indicated that DMPP reduced both N<sub>2</sub>O and NO productions by regulating the associated AOB <em>amoA</em> gene abundance and NO<sub>2</sub><sup>-</sup>-N concentration. These findings improve our insights regarding the implications of DMPP for N<sub>2</sub>O and NO mitigations in vegetable soils under various climate scenarios.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 3","pages":"Pages 652-663"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41515424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aulacaspis yasumatsui infestations accelerate Cycas leaf litter decomposition and nutrient release Yasumtasui Aulacaspis侵扰加速苏铁落叶分解和养分释放
IF 5.7 2区 农林科学
Pedosphere Pub Date : 2024-06-01 DOI: 10.1016/j.pedsph.2023.04.007
Thomas E. MARLER
{"title":"Aulacaspis yasumatsui infestations accelerate Cycas leaf litter decomposition and nutrient release","authors":"Thomas E. MARLER","doi":"10.1016/j.pedsph.2023.04.007","DOIUrl":"10.1016/j.pedsph.2023.04.007","url":null,"abstract":"","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 3","pages":"Pages 681-684"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45829045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupling changes of soil functional gene abundances and extracellular enzyme activities across the diagnostic horizons of agricultural Isohumosols 土壤功能基因丰度与胞外酶活性的耦合变化
IF 5.7 2区 农林科学
Pedosphere Pub Date : 2024-06-01 DOI: 10.1016/j.pedsph.2023.04.003
Zhuxiu LIU , Haidong GU , Xiaojing HU , Zhenhua YU , Yansheng LI , Junjie LIU , Jian JIN , Xiaobing LIU , Guanghua WANG
{"title":"Coupling changes of soil functional gene abundances and extracellular enzyme activities across the diagnostic horizons of agricultural Isohumosols","authors":"Zhuxiu LIU ,&nbsp;Haidong GU ,&nbsp;Xiaojing HU ,&nbsp;Zhenhua YU ,&nbsp;Yansheng LI ,&nbsp;Junjie LIU ,&nbsp;Jian JIN ,&nbsp;Xiaobing LIU ,&nbsp;Guanghua WANG","doi":"10.1016/j.pedsph.2023.04.003","DOIUrl":"10.1016/j.pedsph.2023.04.003","url":null,"abstract":"<div><p>Soil functional microbial taxa and extracellular enzymes are involved in a variety of biogeochemical cycling processes. Although many studies have revealed the vertical change patterns of microbial communities along soil profile, the general understanding of the coupling changes in the functional gene abundances (FGAs) and extracellular enzyme activities (EEAs) in soil profiles is still limited, which hinders us from revealing soil ecosystem processes. Herein, we comparatively investigated the FGAs and EEAs in the diagnostic A, B, and C horizons of soil profiles obtained from two suborders of Isohumosols (Mollisols), Ustic and Udic Isohumosols, in Northeast China based on quantitative real-time polymerase chain reaction and standard fluorometric techniques, respectively. The distribution patterns of both FGAs and EEAs significantly distinguished by the two soil suborders and were also separated from A to C horizon. Additionally, the variations of EEAs and FGAs were greater in Udic Isohumosols compared to Ustic Isohumosols along soil profiles, and greater changes were observed in C horizon than in A horizon. Both FGAs and EEAs correspondently decreased along the soil profiles. However, when normalized by soil organic carbon, the specific EEAs significantly increased in deep soil horizons, suggesting that microorganisms will input more resources to the production of enzymes to ensure microbial nutrient requirements under resource scarcity. More importantly, we revealed that soil microbial nutrient demands were limited by carbon (C) and phosphorus (P), and the C and P limitations significantly increased along soil profiles with a greater C limitation observed in Ustic Isohumosols than in Udic Isohumosols. Overall, our findings provided solid evidence showing the links between FGAs, EEAs, and microbial nutrient limitations, which would be helpful for a better understanding of the ecosystem processes in soil profiles.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 3","pages":"Pages 540-552"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45575279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant-available water capacity of soils at a regional scale: Analysis of fixed and dynamic field capacities 区域尺度土壤植物有效水分:固定和动态田容量分析
IF 5.7 2区 农林科学
Pedosphere Pub Date : 2024-06-01 DOI: 10.1016/j.pedsph.2022.11.003
Vinod PHOGAT , Paul R. PETRIE , Casandra COLLINS , Marcos BONADA
{"title":"Plant-available water capacity of soils at a regional scale: Analysis of fixed and dynamic field capacities","authors":"Vinod PHOGAT ,&nbsp;Paul R. PETRIE ,&nbsp;Casandra COLLINS ,&nbsp;Marcos BONADA","doi":"10.1016/j.pedsph.2022.11.003","DOIUrl":"10.1016/j.pedsph.2022.11.003","url":null,"abstract":"<div><p>Estimation of the plant-available water capacity (PAWC) of soils at a regional scale helps in adopting better land use planning, developing suitable irrigation schedules for crops, and optimizing the use of scarce water resources. In the current study, 72 soil profiles were sampled from the Barossa region of South Australia to estimate pedo-transfer functions deduced from easily estimated soil properties. These functions were then used to estimate the fixed (10 and 33 kPa) and dynamic pressure head (<em>h</em><sub>fc</sub>) water contents at field capacity (FC) for minimum drainage flux (0.01 and 0.001 cm d<sup>-1</sup>), which serves as the upper boundary for plant-available water in soils. The estimated residual water content was corrected for subsoil constraints, especially the exchangeable sodium percentage (ESP). The results showed that the mean values of <em>h</em><sub>fc</sub> in sand-dominated light and medium textured soils (<em>i.e</em>., sand, loamy sand, sandy loam, and loam) varied in a narrow range (15.8–18.2 kPa), whereas those in the clay-dominated heavy textured soils (<em>i.e</em>., clay loam) showed a wide range (11.3–49.3 kPa). There were large differences in PAWC for dynamic FC (PAWC<sub>fc</sub>) and fixed FC at 10 kPa (PAWC<sub>10</sub>), 33 kPa (PAWC<sub>33</sub>), and a mix of 10 and 33 kPa (PAWC<sub>10, 33</sub>) pressure heads depending on soil texture. Normally, the difference between PAWC at 10 kPa and <em>h</em><sub>fc</sub> (ΔPAWC<sub>10</sub>) was positive, whereas that between 33 kPa and <em>h</em><sub>fc</sub> (ΔPAWC<sub>33</sub>) was negative across all sites. Nevertheless, the estimation of PAWC assuming a fixed FC at 10 and 33 kPa pressures (<em>i.e</em>., PAWC<sub>10, 33</sub>) for sandy, clay, and silty soils reduced the difference between fixed and dynamic pressure PAWCs to &lt; 10% across the region. The estimation of PAWC was improved by incorporating the impact of subsoil constraints, such as high ESP, which was more pronounced for clay and silty soils. These findings demonstrate the inherent inconsistencies between static pressure and flux-based dynamic FC estimations in soils. Soil heterogeneity, intra-texture variability, subsoil constraints, and swell-shrink clays can have great impacts on the water retention capacity in response to dynamic and fixed pressure FC values.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 3","pages":"Pages 590-605"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47061204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of fertilizer performances in long-term garlic cropping soils 大蒜长期种植土壤肥料性能的优化
IF 5.7 2区 农林科学
Pedosphere Pub Date : 2024-06-01 DOI: 10.1016/j.pedsph.2023.04.001
Tianqi WEI , Hongmei ZHOU , Huayang HONG , Yanyun REN , Qin LIU , Yanhua SU
{"title":"Optimization of fertilizer performances in long-term garlic cropping soils","authors":"Tianqi WEI ,&nbsp;Hongmei ZHOU ,&nbsp;Huayang HONG ,&nbsp;Yanyun REN ,&nbsp;Qin LIU ,&nbsp;Yanhua SU","doi":"10.1016/j.pedsph.2023.04.001","DOIUrl":"10.1016/j.pedsph.2023.04.001","url":null,"abstract":"<div><p>Continuous cropping is a common pattern of modern agriculture that takes regional advantages for crop yield profits. Along the progress of mono-cropping continuously supported by intensive fertilizer inputs, such a cropping pattern often undergoes serious problems with low fertilizer use efficiencies and unsustainable crop production. In this study, we dealt with a &gt; 25-year continuous garlic cropping system as an example for a problem-solving investigation. These garlic cropping soils underwent problems characterized by loss of soil organic matter, dramatic retention of NH<sub>4</sub><sup>+</sup>-N, and excess accumulation of phosphate and potash chemicals. Through hydroponic simulations, we revealed that the presence of NH<sub>4</sub><sup>+</sup>-N inhibited the root uptake of NO<sub>3</sub><sup>-</sup>-N and K by 68% and 88%, respectively. Despite the traditionally emphasized importance of K, we observed the negative effect of high K on the growth of garlic roots. Further field experiments demonstrated that P and K applications can be reduced by 60% and 50%, respectively, without loss of yield. We thus developed a high-performance fertilization strategy by integrating a recomposed NPK fertilizer formulation to reduce unnecessary P and K inputs, a supplementary application of long-lasting C of woody peat to compensate for the soil C loss, and a foliar K approach to strengthen the stomatal function improvement with K. This strategy allowed a 15% increase of garlic yield and a seasonal soil C profit of <em>ca</em>. 1.8 Mg ha<sup>-1</sup> even at <em>ca</em>. 30% lower fertilizer cost. This study would be helpful in managing garlic fertilization and developing compound fertilizers, with broader significance for other long-term cropping soils.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 3","pages":"Pages 577-589"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45027458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resistance and resilience of soil biological indicators: A case study with multi-walled carbon nanotube 多壁碳纳米管(MWCNT)土壤生物指标的抗性和弹性研究
IF 5.7 2区 农林科学
Pedosphere Pub Date : 2024-06-01 DOI: 10.1016/j.pedsph.2023.04.005
Shagufta YASMEEN , Nintu MANDAL , Anupam DAS , Pritam GANGULY , Sanjay KUMAR , Rajiv RAKSHIT
{"title":"Resistance and resilience of soil biological indicators: A case study with multi-walled carbon nanotube","authors":"Shagufta YASMEEN ,&nbsp;Nintu MANDAL ,&nbsp;Anupam DAS ,&nbsp;Pritam GANGULY ,&nbsp;Sanjay KUMAR ,&nbsp;Rajiv RAKSHIT","doi":"10.1016/j.pedsph.2023.04.005","DOIUrl":"10.1016/j.pedsph.2023.04.005","url":null,"abstract":"<div><p>Soil ecosystem is experiencing stresses due to climate change, and soil inhabitants try to demonstrate their inherent resistance and resilience against those stresses. Application of nanomaterials as agricultural inputs could bring shifts in resistance and resilience patterns of soil microbes and associated enzymes, especially under short-term heat stress. With this background, the impacts of multi-walled carbon nanotube (MWCNT) on the resistance and resilience of soil biological indicators were evaluated. An incubation experiment was conducted with varied MWCNT concentrations (0, 50, 100, 250, and 500 mg kg<sup>-1</sup> soil) for 90 d after 24-h heat stress at 48 ± 2 °C to assess the impacts of MWCNT on soil enzyme activities and microbial populations <em>vis-à-vis</em> their resistance and resilience indices under short-term exposure to heat stress. Enzyme activities were reduced after exposure to heat stress. Resistance indices of enzyme activities were enhanced by MWCNT application on day 1 after heat stress, whereas there was no recovery of enzyme activities after 90-d incubation. Like soil enzyme activities, resistance index values of soil microbial populations followed the similar trend and were improved by MWCNT application. Multi-walled carbon nanotube has the potential to improve resistance indices of soil enzyme activities and microbial populations under heat stress, although they could not recover to their original state during periodical incubation after heat stress. This study helps to understand the relative changes of biological indicators under MWCNT and their ability to withstand heat stress.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 3","pages":"Pages 664-675"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48576740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positive effects of biochar application and Rhizophagus irregularis inoculation on mycorrhizal colonization, rice seedlings and phosphorus cycling in paddy soils 施用生物炭对水稻土中不规则根噬菌体、水稻幼苗和磷循环的积极影响
IF 5.7 2区 农林科学
Pedosphere Pub Date : 2024-04-01 DOI: 10.1016/j.pedsph.2023.06.008
Yixuan CHEN , Zhonghua WEN , Jun MENG , Zunqi LIU , Jialong WEI , Xiyu LIU , Ziyi GE , Wanning DAI , Li LIN , Wenfu CHEN
{"title":"Positive effects of biochar application and Rhizophagus irregularis inoculation on mycorrhizal colonization, rice seedlings and phosphorus cycling in paddy soils","authors":"Yixuan CHEN ,&nbsp;Zhonghua WEN ,&nbsp;Jun MENG ,&nbsp;Zunqi LIU ,&nbsp;Jialong WEI ,&nbsp;Xiyu LIU ,&nbsp;Ziyi GE ,&nbsp;Wanning DAI ,&nbsp;Li LIN ,&nbsp;Wenfu CHEN","doi":"10.1016/j.pedsph.2023.06.008","DOIUrl":"10.1016/j.pedsph.2023.06.008","url":null,"abstract":"<div><p>Phosphorus (P) is an essential element for plant growth but is often limiting in ecosystems; therefore, improving the P fertilizer use efficiency is important. Biochar and arbuscular mycorrhizal fungi (AMF) may enhance P cycling in paddy soils that contain high content of total P but low content of available P (AP). In this study, the effects of biochar addition and <em>Rhizophagus irregularis</em> inoculation on the organic and inorganic P contents and phosphatase activities in paddy soils, rice seedling growth, and AMF colonization were investigated. Compared with no biochar addition, biochar addition enhanced the percentage of spore germination at day 7, hyphal length, most probable number, and mycorrhizal colonization rate of <em>R. irregularis</em> by 32%, 662%, 70%, and 28% on average, respectively. Biochar and <em>R. irregularis</em> altered soil P cycling and availability. Biochar and <em>R. irregularis</em>, either individually or in combination, increased soil AP content by 2%--48%. Rice seedlings treated with biochar and <em>R. irregularis</em> produced greater biomass, improved root morphology, and increased nutrient uptake compared with those of the control without biochar and <em>R. irregularis</em>. The results suggest that combined application of biochar and <em>R. irregularis</em> is beneficial to rice cultivation in paddy soils with high content of total P but low content of AP.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 2","pages":"Pages 361-373"},"PeriodicalIF":5.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47707518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信