Radio SciencePub Date : 2024-08-01DOI: 10.1029/2024RS007965
Amir Hossein Haghparast;Pejman Rezaei
{"title":"Miniaturized, broadband, circular polarized horn antenna with Groove gap waveguide technology","authors":"Amir Hossein Haghparast;Pejman Rezaei","doi":"10.1029/2024RS007965","DOIUrl":"https://doi.org/10.1029/2024RS007965","url":null,"abstract":"In this study, a wideband circularly polarized (CP) H-plane horn antenna based on Gap Waveguide (GW) technology in K-band is presented. The proposed antenna consists of two unconnected metal planes. To produce broadband CP radiation, two main methods are utilized. First, two antipodal tapered plates (ATPs) are added in front of the horn. The ATPs are carefully designed for dissimilar polarization orientations. By this technique, the orthogonal electric fields can be prepared. Then, by embedding three metal square pins near the center of the aperture in both inner plates, the impedance bandwidth (BW) and BW of CP radiation of the proposed horn is entirely improved. Its BW for target |S\u0000<inf>11</inf>\u0000| < —10 dB is 18—28 GHz. Also, the peak gain fluctuates between 11.5 and 13 dB. This antenna can provide a 3 dB polarization axial-ratio BW of about 28.5% (20–26 GHz). Total radiation efficiency is higher than 94%. To verify the design, the proposed structure is manufactured and tested. The proposed horn antenna result has an appropriate agreement between measurement and simulation. Its miniaturized dimensions, easy and cheap fabrication, and broadband CP capability make it a proper volunteer for broadband communication systems.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 8","pages":"1-10"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radio SciencePub Date : 2024-08-01DOI: 10.1029/2022RS007486
Jia Tan;Haidong Xie;Xiaoying Zhang;Nan Ji;Haihua Liao;ZuGuo Yu;Xueshuang Xiang;Naijin Liu
{"title":"Low-interception waveforms: To prevent the recognition of spectrum waveform modulation via adversarial examples","authors":"Jia Tan;Haidong Xie;Xiaoying Zhang;Nan Ji;Haihua Liao;ZuGuo Yu;Xueshuang Xiang;Naijin Liu","doi":"10.1029/2022RS007486","DOIUrl":"https://doi.org/10.1029/2022RS007486","url":null,"abstract":"Deep learning is applied to many complex tasks in the field of wireless communication, such as modulation recognition of spectrum waveforms, because of its convenience and efficiency. This leads to the problem of a malicious third party using a deep learning model to easily recognize the modulation format of the transmitted waveform. Some existing works address this problem directly using the concept of adversarial examples in the computer vision field without fully considering the characteristics of the waveform transmission in the physical world. Therefore, we propose two low-interception waveforms (LIWs) generation methods, the LIW and ULIW algorithms, which can reduce the probability of the modulation being recognized by a third party without affecting the reliable communication of the friendly party. Among them, ULIW improves LIW algorithm by simulating channel noise during training cycle, and substantially reduces the perturbation magnitude while maintaining low interception accuracy. Our LIW and ULIW exhibit significant low-interception performance in both numerical simulations and hardware experiments.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 8","pages":"1-13"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radio SciencePub Date : 2024-08-01DOI: 10.1029/2024RS008004
Mubarak Alanazi;Aladdin Assisi
{"title":"Optimizing radar functionality: Development of a steerable patch antenna array with enhanced bandwidth","authors":"Mubarak Alanazi;Aladdin Assisi","doi":"10.1029/2024RS008004","DOIUrl":"https://doi.org/10.1029/2024RS008004","url":null,"abstract":"Today, wireless communication systems need an antenna with a high gain, efficiency and beamsteering, as well as broadband capability, especially important in radar communications. The array antenna is commonly used in many applications due to its advantages, such as high gain and wide bandwidth. This paper presents an advanced design of a horizontally steerable planar antenna array intended for significant radar applications. A novel structure is used to create a compact array antenna of 8 × 3 elements. The design features a comprehensive 60° steering sector alongside a notable 12% bandwidth (4.45—5.42 GHz), using 8 × 3 planar array in an novel configuration. A three-element series-fed vertical array is utilized, employing aperture feeds with precisely sized patches to maximize performance. A detailed description of the design and refinement process of this array is presented, with emphasis on its exceptional capabilities for horizontal steering and bandwidth efficiency. By employing series-fed vertical arrays with variable patch dimensions, we have successfully developed an antenna array that meets the stringent bandwidth requirements essential for radar technology, thereby enhancing the operational versatility of radar systems.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 8","pages":"1-11"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wideband LP to CP converter using a reflectarray based on modulated admittance surfaces capable of wide-range beam-scanning for Ku/K band applications","authors":"Hamid Tahermanesh;Mohammad Sadegh Abrishamian;Zahra Ghattan Kashani;Mahdi Salehi","doi":"10.1029/2023RS007881","DOIUrl":"https://doi.org/10.1029/2023RS007881","url":null,"abstract":"This study provides the design and demonstration of a Ku/K band horn-fed linear polarization (LP) to circular polarization (CP) converter using a reflectarray antenna based on the holographic technique and the generalized law of total reflection without any iterative algorithms. The proposed hologram performs wide-range frequency beam scanning with minimum gain losses and cross-polarization levels. It comprises 2,500 diagonal slotted octagonal subwavelength metasurfaces with a periodicity of 0.266λ\u0000<inf>0</inf>\u0000 = 4 mm at 20 GHz as the center frequency. Two equations are defined to compute Y\u0000<inf>11</inf>\u0000 of the proposed unit cell regarding its dimensions for TE(0,0) and TM(0,0) Floquet modes. They significantly simplify the coding procedure and reduce the computational time for synthesizing the hologram. The antenna is simulated using the CST software from 14 to 25 GHz. As a confirmation, a prototype is manufactured and measured at 16, 18, 20, 22, and 24 GHz to verify its performance. The simulated and measured results are well-matched. The presented hologram achieves 40% 1.8-dB axial ratio (AR) bandwidth (16–25 GHz), 40% 3.3-dB gain bandwidth (16–24 GHz), and above 30% 2-dB gain bandwidth (16–22 GHz). Moreover, the antenna can perform beam scanning from 42° to 24° by changing the frequency from 16 to 24 GHz with peak gain values greater than 20.33 dBi. The LHCP pencil beams are at least 24° off-broadside, so the proposed hologram avoids the feed blockage. These achievements make the hologram one of the best candidates for satellite communications, radar applications, short-range communication, and point-to-point communication.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 8","pages":"1-13"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radio SciencePub Date : 2024-07-01DOI: 10.1029/2023RS007909
Aaron C. Meyer;Daniel J. Breton;Matthew J. Kamrath;Sergey N. Vecherin
{"title":"Spatial structure of the radio-frequency noise field in a large city","authors":"Aaron C. Meyer;Daniel J. Breton;Matthew J. Kamrath;Sergey N. Vecherin","doi":"10.1029/2023RS007909","DOIUrl":"10.1029/2023RS007909","url":null,"abstract":"The urban radio-frequency (RF) noise generated by our cities continues to change with time. Although models exist to describe the RF noise as functions of frequency and urban land use types, very few models describe the spatial character or structure of the noise on the scales of city blocks (50–150 m). The goal of this work is to investigate the connection between urban morphology and the higher-order spatial statistics of the noise field. To achieve this goal, a large measurement campaign was conducted in Boston, Massachusetts. Many spatial measurements allowed for calculation of spatial correlation functions of noise power in three different neighborhoods, which were used to quantify the spatial structure of the fields. A statistical point source model is then developed, with adjustable parameters relating to urban morphology. Good agreement between the model and the experimental correlation functions suggests the 25 MHz urban noise field is well described by a random network of fixed point sources, radiating with a 1/r power law behavior.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 7","pages":"1-11"},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141839410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radio SciencePub Date : 2024-07-01DOI: 10.1029/2023RS007941
Shijie Sun;Huaqiao Gui;Haihe Jiang;Tingqing Cheng
{"title":"The robustness of an anti-noise BP neural network inversion algorithm for ground-based microwave radiometer","authors":"Shijie Sun;Huaqiao Gui;Haihe Jiang;Tingqing Cheng","doi":"10.1029/2023RS007941","DOIUrl":"10.1029/2023RS007941","url":null,"abstract":"The ground-based microwave radiometer (MWR) retrieves atmospheric profiles with a high temporal resolution for temperature and relative humidity up to a height of 10 km. These profiles have been widely used in the field of meteorological observation. Due to the inherent fragility of neural networks, one of the important issues in this field is to improve the reliability and stability of MWR profiles based on neural network inversion. We propose a deep learning method that adds noise to the BP neural network inversion (NBPNN) process. Comparison of the radiosonde data and NBPNN results shows that if the error of MWR brightness temperature is in the range of − 2−2 K, the root-mean-square error (RMSE) of the temperature profile is 2.15 K, and the RMSE of the relative humidity profile is 19.46 % inverted by NBPNN. The results are much less than the errors of the temperature profile and relative humidity profile inverted by the traditional backpropagation neural network inverse method. From the comparison, we demonstrated that NBPNN significantly increases the inversion accuracy and robustness under the condition of errors in brightness temperature, which can reduce requirements for BT accuracy of MWR and achieve MWR long-term stability.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 7","pages":"1-14"},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141714228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First results of Mars Express—ExoMars trace gas orbiter mutual radio occultation","authors":"Jacob Parrott;Håkan Svedhem;Olivier Witasse;Colin Wilson;Ingo Müller-Wodarg;Alejandro Cardesín-Moinelo;Peter Schmitz;James Godfrey;Olivier Reboud;Bernhard Geiger;Beatriz Sánchez-Cano;Bruno Nava;Yenca Migoya-Orué","doi":"10.1029/2023RS007873","DOIUrl":"10.1029/2023RS007873","url":null,"abstract":"Spacecraft-to-spacecraft radio occultations experiments are being conducted at Mars between Mars Express (MEX) and Trace Gas Orbiter (TGO), the first ever extensive inter-spacecraft occultations at a planet other than Earth. Here we present results from the first 83 such occultations, conducted between 2 Nov 2020 and 5th of July 2023. Of these, 44 observations have to-date resulted in the extraction of vertical electron density profiles. These observations are the successful results of a major feasibility study conducted by the European Space Agency to use pre-existing relay communication equipment for radio science purposes. Mutual radio occultations have numerous advantages over traditional spacecraft-to-ground station occultations. In this work, we demonstrate how raw data are transformed into electron density values and validated with models and other instruments.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 7","pages":"1-18"},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141707322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A multi-objective optimization-based reflective metasurface for enhanced multi-point focusing with diffraction suppression","authors":"Dongping Xiao;Lanxin Xu;Dongping Su;Zhuxin Shi;Huaiqing Zhang","doi":"10.1029/2024RS007968","DOIUrl":"10.1029/2024RS007968","url":null,"abstract":"Metasurface arrays can achieve beam control at low cost and high quality by providing different phase compensations for each unit, effectively focusing microwave energy on target locations. With the development of short-range communication technology or microwave power transmission technology, the demand for focusing has also increased. Using metasurface arrays to achieve multi-target focusing has wide application value. However, as the number of focal points increases, the superposition of electromagnetic wave propagation paths leads to significant interference phenomena, which can impact potential applications. Existing solutions are unable to solve such complex problems involving a large number of targets with conflicts between them. Multi-objective algorithms, by iteratively obtaining a set of optimal solutions, provide decision support for designers in complex multi-objective problems. This paper alters the phase of cells in a reflective array, calculates the near-field electric field model using the Fresnel diffraction formula, and employs various solutions using the Non-dominated Sorting Genetic Algorithm III (NSGA-III) combined with different constraints. Finally, we select the balanced solution to establish the array. After simulation, three adjacent focal points with normalized central values of 1, 0.86, and 0.88 were obtained, with the maximum electric field value outside the focal points being only 0.58, demonstrating the feasibility of multi-objective algorithms in solving complex multi-focal problems.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 7","pages":"1-12"},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radio SciencePub Date : 2024-07-01DOI: 10.1029/2024RS007957
E. G. Thomas;S. G. Shepherd;G. Chisham
{"title":"Multi-frequency SuperDARN interferometer calibration","authors":"E. G. Thomas;S. G. Shepherd;G. Chisham","doi":"10.1029/2024RS007957","DOIUrl":"10.1029/2024RS007957","url":null,"abstract":"The ground-based, high-frequency radars of the Super Dual Auroral Radar Network (SuperDARN) observe backscatter from ionospheric field-aligned plasma irregularities and features on the Earth's surface out to ranges of several thousand kilometers via over-the-horizon propagation of transmitted radio waves. Interferometric techniques can be applied to the received signals at the primary and secondary antenna arrays to measure the vertical angle of arrival, or elevation angle, for more accurate geolocation of SuperDARN observations. However, the calibration of SuperDARN interferometer measurements remains challenging for several reasons, including a 2π phase ambiguity when solving for the time delay correction factor needed to account for differences in the electrical path lengths between signals received at the two antenna arrays. We present a new technique using multi-frequency ionospheric and ground backscatter observations for the calibration of SuperDARN interferometer data, and demonstrate its application to both historical and recent data.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 7","pages":"1-11"},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141705587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}