{"title":"Navigating the blame game: Investigating automated vehicle fault in collisions under mixed traffic conditions","authors":"Boniphace Kutela , Jimoku Hinda Salum , Seif Rashidi Seif , Subasish Das , Emmanuel Kidando","doi":"10.1016/j.robot.2024.104831","DOIUrl":"10.1016/j.robot.2024.104831","url":null,"abstract":"<div><div>Vehicle being at fault in a crash has extensively been associated with its driver's behaviors and other human errors for human-driven vehicles (HDV). The introduction of automated vehicles (AVs) is expected to eliminate such human errors due to the ability of AVs to communicate with the external environment. However, various reports have documented AVs being at fault in collisions. This study applied text mining and mixed-effects logistic regression (MELR) on crash data involving AVs collected between 2017 and 2022 in California to explore the likelihood of an AV being at fault during a collision. It was found that among 497 crashes, a relatively small percentage (14.29 %) involved AVs being at fault. The text network results revealed patterns of keywords associated with the AVs being at fault. Such patterns include conventional mode of operation, area of impact, and resulting injuries. Furthermore, with about a 93 % prediction accuracy and an 83 % sensitivity score, the MELR results revealed that the likelihood of AVs being at fault increases when they are operated in conventional mode or when disengagement is involved. Moreover, turning, merging, or changing lane movements, unclear weather conditions, and operating on roadways with four or more lanes significantly increased the odds of an AV being at fault during a crash. Conversely, AVs were less likely to be at fault in commercial land use than residential land use, at intersection locations, and when the crash involved a truck. The practical implications of the findings are presented to improve AV operations.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"182 ","pages":"Article 104831"},"PeriodicalIF":4.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The path towards contact-based physical human–robot interaction","authors":"Mohammad Farajtabar, Marie Charbonneau","doi":"10.1016/j.robot.2024.104829","DOIUrl":"10.1016/j.robot.2024.104829","url":null,"abstract":"<div><div>With the advancements in human–robot interaction (HRI), robots are now capable of operating in close proximity and engaging in physical interactions with humans (pHRI). Likewise, contact-based pHRI is becoming increasingly common as robots are equipped with a range of sensors to perceive human motions. Despite the presence of surveys exploring various aspects of HRI and pHRI, there is presently a gap in comprehensive studies that collect, organize and relate developments across all aspects of contact-based pHRI. It has become challenging to gain a comprehensive understanding of the current state of the field, thoroughly analyze the aspects that have been covered, and identify areas needing further attention. Hence, the present survey. While it includes key developments in pHRI, a particular focus is placed on contact-based interaction, which has numerous applications in industrial, rehabilitation and medical robotics. Across the literature, a common denominator is the importance to establish a safe, compliant and human intention-oriented interaction. This endeavour encompasses aspects of perception, planning and control, and how they work together to enhance safety and reliability. Notably, the survey highlights the application of data-driven techniques: backed by a growing body of literature demonstrating their effectiveness, approaches like reinforcement learning and learning from demonstration have become key to improving robot perception and decision-making within complex and uncertain pHRI scenarios. This survey also stresses how little attention has yet been dedicated to ethical considerations surrounding pHRI, including the development of contact-based pHRI systems that are appropriate for people and society. As the field is yet in its early stage, these observations may help guide future developments and steer research towards the responsible integration of physically interactive robots into workplaces, public spaces, and elements of private life.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"182 ","pages":"Article 104829"},"PeriodicalIF":4.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enrico Mingo Hoffman , Andrea Curti , Narcis Miguel , Sai Kishor Kothakota , Alberto Molina , Adria Roig , Luca Marchionni
{"title":"Modeling and numerical analysis of Kangaroo lower body based on constrained dynamics of hybrid serial–parallel floating-base systems","authors":"Enrico Mingo Hoffman , Andrea Curti , Narcis Miguel , Sai Kishor Kothakota , Alberto Molina , Adria Roig , Luca Marchionni","doi":"10.1016/j.robot.2024.104827","DOIUrl":"10.1016/j.robot.2024.104827","url":null,"abstract":"<div><div>This paper presents the modeling and numerical analysis of the Kangaroo lower body prototype, a novel bipedal humanoid robot developed and manufactured by PAL Robotics. Kangaroo features high-power linear electric actuators combined with unique serial–parallel hybrid chains, which allow for the positioning of all the leg actuators near the base of the robot to improve the overall mass distribution. To model and analyze such complex nonlinear mechanisms, we employ a constrained formulation that is extended to account for floating-base systems in contact with the environment. A comparison is made to demonstrate the significant improvements achieved with TALOS, another humanoid bipedal robot designed by PAL Robotics, in terms of equivalent Cartesian inertia at the feet and centroidal angular momentum. Finally, the paper includes numerical experiments conducted through simulation and preliminary tests performed on the actual Kangaroo platform.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"182 ","pages":"Article 104827"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Collision-free tracking for a mobile robot based on purely geometric planning","authors":"Zhuanzhuan Ma , Li Chen , Tian Liang , Jinguo Liu","doi":"10.1016/j.robot.2024.104828","DOIUrl":"10.1016/j.robot.2024.104828","url":null,"abstract":"<div><div>A purely geometric planning method for a mobile robot in unknown environments is proposed to ensure collision avoidance with obstacles within the safety time interval while moving toward the goal. The robot initially detects a point cloud of obstacles using a 2D LiDAR. Euclidean clustering is employed to classify the point cloud into distinct point classes. Each point class is then identified as a directed closed-loop rectangle representing the obstacle. A relative orientation <em>k</em>d-tree is designed to store the vertices of the obstacles and determine which obstacles should be considered in the obstacle avoidance algorithm. A velocity divider is introduced to obtain a linear convex area of possible obstacle avoidance velocities. Linear planning is then used to calculate the optimal obstacle avoidance velocity for control. A virtual reference point method is proposed to address the problem of an unreachable goal in a singular configuration. Experimental results show that the directed closed-loop rectangle and relative orientation <em>k</em>d-tree facilitate rapid updates of required obstacle points with low-cost sensor equipment. A deterministic path for a given scenario is demonstrated, confirming the reliability of the geometric planning method for the obstacle avoidance velocity region and the optimal obstacle avoidance velocity. The proposed algorithm is further validated in scenarios with multiple obstacles and dynamic environments involving moving obstacles.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"183 ","pages":"Article 104828"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaolei Ren , Hui Liu , Yechen Qin , Lijin Han , Shida Nie , Jingshuo Xie
{"title":"Trajectory optimization and stability control for a novel unmanned intelligent wheel-legged vehicles on unstructured terrains","authors":"Xiaolei Ren , Hui Liu , Yechen Qin , Lijin Han , Shida Nie , Jingshuo Xie","doi":"10.1016/j.robot.2024.104818","DOIUrl":"10.1016/j.robot.2024.104818","url":null,"abstract":"<div><div>The trend of intelligent vehicles is currently expanding, and a new class of unmanned intelligent vehicles known as wheel-legged vehicles (WLVs) is emerging. WLVs excel in transportation on unstructured terrain by offering a unique combination of the efficiency of wheels on flat ground and the versatility of legs to tackle obstacles. To enhance the locomotion performance of WLVs on unstructured terrains, this paper presents a novel framework for improving their locomotion through nonlinear programming-based (NLP) trajectory optimization and stability control. The framework optimizes the vehicle’s body and wheel positioning while incorporating terrain information and employs a linear rigid body dynamic model for efficient motion planning. The stability control framework combines feedforward control using ground reaction forces with feedback control through joint PD control and utilizes model predictive control (MPC) to adjust the wheel slip ratio to prevent slip on steep slopes. Experimental validation on the real vehicle with torque-controlled wheels demonstrated the capability of driving over a 1 m height with a 30°slope at an average speed of 0.7 m/s and a maximum speed of 1.03 m/s. Our approach also enables the WLV to overcome obstacles, such as inclines, while dynamically negotiating these challenging terrains.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"182 ","pages":"Article 104818"},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xueyi Li , Daiyou Li , Peng Yuan , Yining Xie , Zhiliang Wang , Zhijie Xie , Xiangwei Kong , Fulei Chu
{"title":"Fusion innovation: Multi-scale dilated collaborative model of ConvNeXt and MSDA for fault diagnosis","authors":"Xueyi Li , Daiyou Li , Peng Yuan , Yining Xie , Zhiliang Wang , Zhijie Xie , Xiangwei Kong , Fulei Chu","doi":"10.1016/j.robot.2024.104819","DOIUrl":"10.1016/j.robot.2024.104819","url":null,"abstract":"<div><div>Bearings and gears are critical components in modern industry, and cross-domain diagnosis of these elements is of great significance. However, in practical applications, challenges such as insufficient training data and variability between equipment arise. To address this issue, this study proposes an innovative neural network structure, ConvNeXt, and a Multi-Scale Dilated Attention (MSDA) mechanism to improve the accuracy problem caused by inadequate feature extraction. ConvNeXt improves upon traditional convolutional neural networks by introducing a multi-scale attention mechanism to enhance the model's performance and expressiveness. Through parallel multi-channel convolution operations, ConvNeXt can capture dependencies between different channels and reduce the number of parameters. Meanwhile, the MSDA mechanism allows signals to interact and exchange information at different scales, effectively extracting complex features in one-dimensional signals. Experimental results demonstrate a significant performance improvement in one-dimensional signal processing using ConvNeXt and MSDA, better capturing relationships between global and local features in one-dimensional signals and enhancing model accuracy. The joint application of ConvNeXt and MSDA brings new solutions to one-dimensional signal processing, offering potential opportunities for effective monitoring of critical components in rotating machinery. Experimental results show that this method achieves high diagnostic accuracy in various transfer tasks, with an average accuracy of 94.28%, providing reliable support for bearing fault diagnosis.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"182 ","pages":"Article 104819"},"PeriodicalIF":4.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Gnad , Hubert Gattringer , Andreas Müller , Wolfgang Höbarth , Roland Riepl , Lukas Meßner
{"title":"Identification of physically consistent dynamics parameter of the ABB IRB 360-6/1600 delta robot and its use for time-optimal motion planning under consideration of constraint forces","authors":"Daniel Gnad , Hubert Gattringer , Andreas Müller , Wolfgang Höbarth , Roland Riepl , Lukas Meßner","doi":"10.1016/j.robot.2024.104823","DOIUrl":"10.1016/j.robot.2024.104823","url":null,"abstract":"<div><div>Model-based control schemes, forward dynamics simulations, constraint force computation and time-optimal motion planning have one major thing in common, they all depend on the dynamics parameters of the system. Physical consistency of the dynamics parameters ensures a positive definite mass matrix and correct constraint forces. The most common inverse dynamics identification method – the base-parameters – lack physical consistency. This paper proposes an identification method to identify physically consistent dynamics parameters for Delta-like robots while further showing the effects of friction in passive joints. A tailored model to compute the crucial constraint forces appearing in the mechanism based on the identified dynamics parameters is derived. This model is used to additionally consider constraint forces besides actuation torques for time-optimal motion planning of a typical pick and place task. This is done without any prior CAD data of the robot from the manufacturer.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"182 ","pages":"Article 104823"},"PeriodicalIF":4.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved ACO algorithm fused with improved Q-Learning algorithm for Bessel curve global path planning of search and rescue robots","authors":"Wenkai Fang , Zhigao Liao , Yufeng Bai","doi":"10.1016/j.robot.2024.104822","DOIUrl":"10.1016/j.robot.2024.104822","url":null,"abstract":"<div><div>Addressing issues with traditional ant colony and reinforcement learning algorithms, such as low search efficiency and the tendency to produce insufficiently smooth paths that easily fall into local optima, this paper designs an improved ant colony optimization algorithm fusion with improved Q-Learning (IAC-IQL) algorithm for Bessel curve global path planning of search and rescue (SAR) robots. First, the heuristic function model in the ant colony algorithm is improved, the elite ant search strategy and the adaptive pheromone volatility factor strategy are introduced, and the initial path is searched in realize the motion environment with the help of the improved ant colony algorithm, and the initialized pheromone matrix is constructed. Second, the improved ant colony algorithm and Q-Learning (QL) algorithm are fused by utilizing the similarity between the pheromone matrix in the improved ant colony algorithm and the Q-matrix in the QL algorithm. A heuristic learning evaluation model is designed to dynamically adjust the learning factor and provide guidance for the search path. Additionally, a dynamic adaptive greedy strategy is introduced to balance the exploration and exploitation of the robot in the environment. Finally, the paths are smoothed using third-order Bessel curves to eliminate the problem of excessive steering angles. Through three sets of comparative simulation experiments conducted in Pycharm platform, the effectiveness, superiority, and practicality of the IAC-IQL algorithm were verified. The experimental results demonstrated that the IAC-IQL algorithm integrates the strong search capability of ant colony algorithm and the self-learning characteristics of QL algorithm. SAR robots equipped with the improved IAC-IQL algorithm exhibit significantly enhanced iterative search efficiency in grid simulation environment and image sampling simulation environment. The global path optimization indicators demonstrate high efficiency, and the paths are smoother.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"182 ","pages":"Article 104822"},"PeriodicalIF":4.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shape-Guided Detection: A joint network combining object detection and underwater image enhancement together","authors":"Chao Yang, Longyu Jiang, Zhicheng Li, Jie Wu","doi":"10.1016/j.robot.2024.104817","DOIUrl":"10.1016/j.robot.2024.104817","url":null,"abstract":"<div><div>Most of the existing underwater image object detection methods involve pre-processing, such as using underwater image enhancement, to improve the accuracy of object detection. However, pre-processing methods are designed to improve the subjective perception of the human eye, which does not necessarily improve the object detection performance and consumes a large amount of computational resources. Therefore, in this paper, we creatively combine these two tasks and propose a Shape-Guided Detection network (SGD) to simultaneously optimize underwater image enhancement and object detection. In the SGD network, we innovatively incorporate the prior shape features as a learnable module embedded in it to fully explore the shape characteristics and structural details of the target object. To ensure that the prior knowledge can be effectively fused into the global network structure, we design a Shape Prior Enhancement module, which aims to realize the deep integration of the prior information with the local details. In order to optimize the stability of model training and enhance its convergence performance, a dual strategy of explicit and implicit constraints is ingeniously proposed in our method. We conduct extensive experiments on public datasets and the results show that the combination of our method with different detectors significantly improves the performance. The object detection performance reaches up to 0.491 mAP for optical images and 0.576 mAP for sonar images, and improves the preprocessing speed by 0.1 s.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"182 ","pages":"Article 104817"},"PeriodicalIF":4.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximate sequential optimization for informative path planning","authors":"Joshua Ott , Mykel J. Kochenderfer , Stephen Boyd","doi":"10.1016/j.robot.2024.104814","DOIUrl":"10.1016/j.robot.2024.104814","url":null,"abstract":"<div><div>We consider the problem of finding an informative path through a graph, given initial and terminal nodes and a given maximum path length. We assume that a linear noise corrupted measurement is taken at each node of an underlying unknown vector that we wish to estimate. The informativeness is measured by the reduction in uncertainty in our estimate, evaluated using several Gaussian process-based metrics. We present a convex relaxation for this informative path planning problem, which we can readily solve to obtain a bound on the possible performance. We develop an approximate sequential method where the path is constructed segment by segment through dynamic programming. This involves solving an orienteering problem, with the node reward acting as a surrogate for informativeness, taking the first step, and then repeating the process. The method scales to very large problem instances and achieves performance close to the bound produced by the convex relaxation. We also demonstrate our method’s ability to handle adaptive objectives, multimodal sensing, and multi-agent variations of the informative path planning problem.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"182 ","pages":"Article 104814"},"PeriodicalIF":4.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}