{"title":"A report on gender diversity and equality in the geosciences: an analysis of the Swiss Geoscience Meetings from 2003 to 2019","authors":"F. Piccoli, Giulia Guidobaldi","doi":"10.1186/s00015-020-00379-x","DOIUrl":"https://doi.org/10.1186/s00015-020-00379-x","url":null,"abstract":"","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"1-12"},"PeriodicalIF":3.1,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-020-00379-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49417044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lukas Nibourel, Alfons Berger, Daniel Egli, Stefan Heuberger, Marco Herwegh
{"title":"Structural and thermal evolution of the eastern Aar Massif: insights from structural field work and Raman thermometry.","authors":"Lukas Nibourel, Alfons Berger, Daniel Egli, Stefan Heuberger, Marco Herwegh","doi":"10.1186/s00015-020-00381-3","DOIUrl":"https://doi.org/10.1186/s00015-020-00381-3","url":null,"abstract":"<p><p>The thermo-kinematic evolution of the eastern Aar Massif, Swiss Alps, was investigated using peak temperature data estimated from Raman spectroscopy of carbonaceous material and detailed field analyses. New and compiled temperature-time constraints along the deformed and exhumed basement-cover contact allow us to (i) establish the timing of metamorphism and deformation, (ii) track long-term horizontal and vertical orogenic movements and (iii) assess the influence of temperature and structural inheritance on the kinematic evolution. We present a new shear zone map, structural cross sections and a step-wise retrodeformation. From <math><mtext>ca.;26,Ma</mtext></math> onwards, basement-involved deformation started with the formation of relatively discrete NNW-directed thrusts. Peak metamorphic isograds are weakly deformed by these thrusts, suggesting that they initiated before or during the metamorphic peak under ongoing burial in the footwall to the basal Helvetic roof thrust. Subsequent peak- to post-metamorphic deformation was dominated by steep, mostly NNW-vergent reverse faults ( <math><mtext>ca.</mtext></math> 22-14 Ma). Field investigations demonstrate that these shear zones were steeper than <math><msup><mn>50</mn> <mo>∘</mo></msup> </math> already at inception. This produced the massif-internal structural relief and was associated with large vertical displacements (7 km shortening vs. up to 11 km exhumation). From 14 Ma onwards, the eastern Aar massif exhumed \"en bloc\" (i.e., without significant differential massif-internal exhumation) in the hanging wall of frontal thrusts, which is consistent with the transition to strike-slip dominated deformation observed within the massif. Our results indicate 13 km shortening and 9 km exhumation between 14 Ma and present. Inherited normal faults were not significantly reactivated. Instead, new thrusts/reverse faults developed in the basement below syn-rift basins, and can be traced into overturned fold limbs in the overlying sediment, producing tight synclines and broad anticlines along the basement-cover contact. The sediments were not detached from their crystalline substratum and formed disharmonic folds. Our results highlight decreasing rheological contrasts between (i) relatively strong basement and (ii) relatively weak cover units and inherited faults at higher temperature conditions. Both the timing of basement-involved deformation and the structural style (shear zone dip) appear to be controlled by evolving temperature conditions.</p>","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"9"},"PeriodicalIF":3.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-020-00381-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25500539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edwin Gnos, Josef Mullis, Emmanuelle Ricchi, Christian A Bergemann, Emilie Janots, Alfons Berger
{"title":"Episodes of fissure formation in the Alps: connecting quartz fluid inclusion, fissure monazite age, and fissure orientation data.","authors":"Edwin Gnos, Josef Mullis, Emmanuelle Ricchi, Christian A Bergemann, Emilie Janots, Alfons Berger","doi":"10.1186/s00015-021-00391-9","DOIUrl":"https://doi.org/10.1186/s00015-021-00391-9","url":null,"abstract":"<p><p>Fluid assisted Alpine fissure-vein and cleft formation starts at prograde, peak or retrograde metamorphic conditions of 450-550 °C and 0.3-0.6 GPa and below, commonly at conditions of ductile to brittle rock deformation. Early-formed fissures become overprinted by subsequent deformation, locally leading to a reorientation. Deformation that follows fissure formation initiates a cycle of dissolution, dissolution/reprecipitation or new growth of fissure minerals enclosing fluid inclusions. Although fissures in upper greenschist and amphibolite facies rocks predominantly form under retrograde metamorphic conditions, this work confirms that the carbon dioxide fluid zone correlates with regions of highest grade Alpine metamorphism, suggesting carbon dioxide production by prograde devolatilization reactions and rock-buffering of the fissure-filling fluid. For this reason, fluid composition zones systematically change in metamorphosed and exhumed nappe stacks from diagenetic to amphibolite facies metamorphic rocks from saline fluids dominated by higher hydrocarbons, methane, water and carbon dioxide. Open fissures are in most cases oriented roughly perpendicular to the foliation and lineation of the host rock. The type of fluid constrains the habit of the very frequently crystallizing quartz crystals. Open fissures also form in association with more localized strike-slip faults and are oriented perpendicular to the faults. The combination of fissure orientation, fissure quartz fluid inclusion and fissure monazite-(Ce) (hereafter monazite) Th-Pb ages shows that fissure formation occurred episodically (1) during the Cretaceous (eo-Alpine) deformation cycle in association with exhumation of the Austroalpine Koralpe-Saualpe region (~ 90 Ma) and subsequent extensional movements in association with the formation of the Gosau basins (~ 90-70 Ma), (2) during rapid exhumation of high-pressure overprinted Briançonnais and Piemontais units (36-30 Ma), (3) during unroofing of the Tauern and Lepontine metamorphic domes, during emplacement and reverse faulting of the external Massifs (25-12 Ma; except Argentera) and due to local dextral strike-slip faulting in association with the opening of the Ligurian sea, and (4) during the development of a young, widespread network of ductile to brittle strike-slip faults (12-5 Ma).</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1186/s00015-021-00391-9.</p>","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"14"},"PeriodicalIF":3.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-021-00391-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39578818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua D Vaughan-Hammon, Cindy Luisier, Lukas P Baumgartner, Stefan M Schmalholz
{"title":"Alpine peak pressure and tectono-metamorphic history of the Monte Rosa nappe: evidence from the cirque du Véraz, upper Ayas valley, Italy.","authors":"Joshua D Vaughan-Hammon, Cindy Luisier, Lukas P Baumgartner, Stefan M Schmalholz","doi":"10.1186/s00015-021-00397-3","DOIUrl":"https://doi.org/10.1186/s00015-021-00397-3","url":null,"abstract":"<p><p>The Monte Rosa nappe consists of a wide range of lithologies that record conditions associated with peak Alpine metamorphism. While peak temperature conditions inferred from previous studies largely agree, variable peak pressures have been estimated for the Alpine high-pressure metamorphic event. Small volumes of whiteschist lithologies with the assemblage chloritoid + phengite + talc + quartz record peak pressures up to 0.6 GPa higher compared to associated metapelitic and metagranitic lithologies, which yield a peak pressure of ca. 1.6 GPa. The reason for this pressure difference is disputed, and proposed explanations include tectonic mixing of rocks from different burial depths (mélange) or local deviations of the pressure from the lithostatic value caused by heterogeneous stress conditions between rocks of contrasting mechanical properties. We present results of detailed field mapping, structural analysis and a new geological map for a part of the Monte Rosa nappe exposed at the cirque du Véraz field area (head of the Ayas valley, Italy). Results of the geological mapping and structural analysis shows the structural coherency within the western portions of the Monte Rosa nappe. This structural coherency falsifies the hypothesis of a tectonic mélange as reason for peak pressure variations. Structural analysis indicates two major Alpine deformation events, in agreement with earlier studies: (1) north-directed nappe emplacement, and (2) south-directed backfolding. We also analyze a newly discovered whiteschist body, which is located at the intrusive contact between Monte Rosa metagranite and surrounding metapelites. This location is different to previous whiteschist occurrences, which were entirely embedded within metagranite. Thermodynamic calculations using metamorphic assemblage diagrams resulted in 2.1 ± 0.2 GPa and 560 ± 20 °C for peak Alpine metamorphic conditions. These results agree with metamorphic conditions inferred for previously investigated nearby whiteschist outcrops embedded in metagranite. The new results, hence, confirm the peak pressure differences between whiteschists and the metagranite and metapelite. To better constrain the prograde pressure-temperature history of the whiteschist, we compare measured Mg zoning in chloritoid with Mg zoning predicted by fractional crystallization pseudo-section modelling for several hypothetical pressure-temperature paths. In order to reach a ca. 0.6 GPa higher peak pressure compared to the metapelite and metagranite, our results suggest that the whiteschist likely deviated from the prograde burial path recorded in metapelite and metagranite lithologies. However, the exact conditions at which the whiteschist pressure deviated are still contentious due to the strong temperature dependency of Mg partitioning in whiteschist assemblages. Our pseudo-section results suggest at least that there was no dramatic isothermal pressure increase recorded in the whiteschist.</p>","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"20"},"PeriodicalIF":3.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39685910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New insights on the Early Cretaceous (Hauterivian-Barremian) Urgonian lithostratigraphic units in the Jura Mountains (France and Switzerland): the Gorges de l'Orbe and the Rocher des Hirondelles formations.","authors":"Antoine Pictet","doi":"10.1186/s00015-021-00395-5","DOIUrl":"https://doi.org/10.1186/s00015-021-00395-5","url":null,"abstract":"<p><p>The Hauterivian-Barremian series of the Jura Mountains were measured over more than 60 sections along a 200 km long transect between Aix-les-Bains (Savoie Department, France) and Bienne (Bern Canton, Switzerland), which prompted the need for a revision and improvement of the current lithostratigraphic scheme for this stratigraphic interval. A new formation, the Rocher des Hirondelles Formation, is proposed in replacement of the unsuitable Vallorbe Formation, while the Gorges de l'Orbe Formation is formally described. The Gorges de l'Orbe Formation, equivalent to the well-known \"Urgonien jaune\" facies, consists of two members, namely Montcherand Member and Bôle Member. The Rocher des Hirondelles Formation, equivalent to the \"Urgonien blanc\" facies, consists of three members, i.e. Fort de l'Écluse Member, Rivière Member and Vallorbe Member. The marly Rivière and Bôle members appear to present time-equivalent lithostratigraphic units, recording a major sedimentological event affecting contemporarily both formations. This study proposes a new sedimentary model opening a new point of view on the long-living controversies about the age of the Urgonian series from the Jura Mountains. The data point to strong diachronic ages of lithostratigraphic units with a late Hauterivian to early Barremian occurrence of the \"Urgonian blanc\" facies in the Meridional Jura area versus a latest Barremian age in the Central Jura area, reflecting a general progradation of the Urgonian shallow-water carbonate platform from the present-day Meridional Jura area toward external deeper-water shelf environments of the present-day Central Jura area and Molasse basin.</p>","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"18"},"PeriodicalIF":3.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39578819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefano C Fabbri, Isabel Haas, Katrina Kremer, Danae Motta, Stéphanie Girardclos, Flavio S Anselmetti
{"title":"Subaqueous geomorphology and delta dynamics of Lake Brienz (Switzerland): implications for the sediment budget in the alpine realm.","authors":"Stefano C Fabbri, Isabel Haas, Katrina Kremer, Danae Motta, Stéphanie Girardclos, Flavio S Anselmetti","doi":"10.1186/s00015-021-00399-1","DOIUrl":"https://doi.org/10.1186/s00015-021-00399-1","url":null,"abstract":"<p><p>Non-invasive techniques such as seismic investigations and high-resolution multibeam sonars immensely improved our understanding of the geomorphology and sediment regimes in both the lacustrine and the marine domain. However, only few studies provide quantifications of basin wide-sediment budgets in lakes. Here, we use the combination of high-resolution bathymetric mapping and seismic reflection data to quantify the sediment budget in an alpine lake. The new bathymetric data of Lake Brienz reveal three distinct geomorphological areas: slopes with intercalated terraces, a flat basin plain, and delta areas with subaquatic channel systems. Quasi-4D seismic reflection data allow sediment budgeting of the lake with a total sediment input of 5.54 × 10<sup>6</sup> t sediment over 15 years of which three-quarter were deposited in the basin plain. Lake Brienz yields extraordinarily high sedimentation rates of 3.0 cm/yr in the basin plain, much more than in other Swiss lakes. This can be explained by (i) its role as first sedimentary sink in a high-alpine catchment, and by (ii) its morphology with subaquatic channel-complexes allowing an efficient sediment transfer from proximal to distal areas of the lake.</p>","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"22"},"PeriodicalIF":3.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8688381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39624912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Molli, A. Brogi, A. Caggianelli, E. Capezzuoli, D. Liotta, A. Spina, I. Zibra
{"title":"Late Palaeozoic tectonics in Central Mediterranean: a reappraisal","authors":"G. Molli, A. Brogi, A. Caggianelli, E. Capezzuoli, D. Liotta, A. Spina, I. Zibra","doi":"10.1186/s00015-020-00375-1","DOIUrl":"https://doi.org/10.1186/s00015-020-00375-1","url":null,"abstract":"","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"113 1","pages":"1-32"},"PeriodicalIF":3.1,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-020-00375-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48249772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emmanuelle Ricchi, E. Gnos, D. Rubatto, M. Whitehouse, T. Pettke
{"title":"Correction to: Ion microprobe dating of fissure monazite in the Western Alps: insights from the Argentera Massif and the Piemontais and Briançonnais Zones","authors":"Emmanuelle Ricchi, E. Gnos, D. Rubatto, M. Whitehouse, T. Pettke","doi":"10.1186/s00015-020-00378-y","DOIUrl":"https://doi.org/10.1186/s00015-020-00378-y","url":null,"abstract":"","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":" ","pages":"1-2"},"PeriodicalIF":3.1,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-020-00378-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46510481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Neubauer, Yong‐jiang Liu, R. Chang, Sihua Yuan, Sheng‐yao Yu, J. Genser, Boran Liu, Q. Guan
{"title":"The Wechsel Gneiss Complex of Eastern Alps: an Ediacaran to Cambrian continental arc and its Early Proterozoic hinterland","authors":"F. Neubauer, Yong‐jiang Liu, R. Chang, Sihua Yuan, Sheng‐yao Yu, J. Genser, Boran Liu, Q. Guan","doi":"10.1186/s00015-020-00373-3","DOIUrl":"https://doi.org/10.1186/s00015-020-00373-3","url":null,"abstract":"","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"113 1","pages":"1-23"},"PeriodicalIF":3.1,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-020-00373-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42311876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Kempf, J. Hermann, E. Reusser, L. Baumgartner, P. Lanari
{"title":"Correction to: The role of the antigorite + brucite to olivine reaction in subducted serpentinites (Zermatt, Switzerland)","authors":"E. Kempf, J. Hermann, E. Reusser, L. Baumgartner, P. Lanari","doi":"10.1186/s00015-020-00377-z","DOIUrl":"https://doi.org/10.1186/s00015-020-00377-z","url":null,"abstract":"","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"256 1-2","pages":"1"},"PeriodicalIF":3.1,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-020-00377-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41309223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}