Swiss Journal of Geosciences最新文献

筛选
英文 中文
Facies variability and depositional cyclicity in central Northern Switzerland: insights from new Opalinus Clay drill cores 瑞士北部中部的地貌变异性和沉积周期性:从新的奥帕里努斯粘土钻芯中获得的启示
IF 3.1 2区 地球科学
Swiss Journal of Geosciences Pub Date : 2024-09-12 DOI: 10.1186/s00015-024-00463-6
Géraldine N. Zimmerli, Stephan Wohlwend, Gaudenz Deplazes, Jens Becker, Andreas Wetzel, Fabio Francescangeli, Anneleen Foubert
{"title":"Facies variability and depositional cyclicity in central Northern Switzerland: insights from new Opalinus Clay drill cores","authors":"Géraldine N. Zimmerli, Stephan Wohlwend, Gaudenz Deplazes, Jens Becker, Andreas Wetzel, Fabio Francescangeli, Anneleen Foubert","doi":"10.1186/s00015-024-00463-6","DOIUrl":"https://doi.org/10.1186/s00015-024-00463-6","url":null,"abstract":"The Opalinus Clay, a silty to sandy claystone formation, Early to Middle Jurassic (Toarcian and Aalenian) in age, has been selected as the host rock for deep subsurface disposal of radioactive waste in Switzerland. Over the past thirty years, numerous geotechnical, mineralogical, and sedimentological studies have been conducted on the Opalinus Clay within the framework of the Nagra (National Cooperative for the Disposal of Radioactive Waste) deep drilling campaigns and the Mont Terri Project, an international research program dedicated to the study of claystone. The present study aims to unravel the variability of the lateral and vertical facies of the Opalinus Clay in central Northern Switzerland and to place this variability in a regional and basinal context. Analyses of new cores drilled in central Northern Switzerland, including petrographic, mineralogical (X-ray diffraction, multi-mineral interpretation), geochemical (X-ray fluorescence), statistical (non-metric multidimensional scaling analysis), and bedding dip and azimuth data, shed new light on the depositional facies and the spatial and temporal variability of the Opalinus Clay. Petrographic descriptions encompass nine new drill cores using a revised subfacies/facies classification scheme based on texture (colour, grain size, bedding) and composition (mineralogy). Particularly, one new subfacies (SF6) is described and interpreted as mass-wasting deposits. The drill cores are correlated laterally using specific marker horizons. This correlation is achieved by combining thorough facies investigations with lithostratigraphy, biostratigraphy, and chemostratigraphy. Six to seven small coarsening-upward cycles and two long-term coarsening-upward sequences can be interpreted as regressive trends. The observed trends are influenced by the interplay between sediment supply, eustatic sea level change, synsedimentary subsidence, but also the palaeogeographic configuration in an epicontinental sea, provenance and delivery of sediments, current dynamics and climate change. Finally, combined results show that the current dynamics in the Opalinus Clay has been underestimated until now and new depositional models, including the occurrence of drift deposits, are discussed.","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"24 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of a normal orogenic palaeo-geothermal gradient with clay mineral and organic matter indices: a review 用粘土矿物和有机物指数确定正常造山古地热梯度:综述
IF 3.1 2区 地球科学
Swiss Journal of Geosciences Pub Date : 2024-09-12 DOI: 10.1186/s00015-024-00460-9
Rafael Ferreiro Mählmann, Meinert Rahn, Sébastien Potel, Lan Nguyen-Thanh, Rainer Petschick
{"title":"Determination of a normal orogenic palaeo-geothermal gradient with clay mineral and organic matter indices: a review","authors":"Rafael Ferreiro Mählmann, Meinert Rahn, Sébastien Potel, Lan Nguyen-Thanh, Rainer Petschick","doi":"10.1186/s00015-024-00460-9","DOIUrl":"https://doi.org/10.1186/s00015-024-00460-9","url":null,"abstract":"A collection of large data sets from different orogenic belts was compiled for a correlation between organic matter (OM) versus clay mineral (CM) indices calibrated with the vitrinite reflectance, (VR) vs Kübler-Indices (KI) method. Data selection was based on a normal geothermal gradient (25 to 35 °C/km) as determined in previous studies, e.g. by maturity modelling and clay mineral reaction progress calculations. In the Lower Austroalpine (Eastern Switzerland, European Alps) a 20 myr lasting metamorphic overprint caused an OM–CM thermal equilibrium among the indices used. The observed correlation enables to determine gradual changes in metamorphic factors such as pressure, temperature and time causing sensitive shifts of the gradient slope in the range of normal gradients. For New Caledonia, an identical correlation has been determined. Prior to re-equilibration of the VR/KI indices, sediments in New Caledonia of diagenetic to incipient metamorphic grade underwent a high-pressure subduction event. VR/KI indices are in or close to equilibrium, while slight differences in OM vs CM indices allow for a better understanding of polyphase conditions, especially with respect to pressure. Temperature estimations are identical despite of their poly-phase metamorphic history, which was mainly controlled by the last orogenic thermal event lasting > 5 to < 10 myr. In the eastern Helvetic Alps and Northern Calcareous Alps similar correlations were found with slightly different slopes. Comparison between different regions is possible when using KI standardization and same data discrimination. In both parts of the Alps a complex thermal history of short durations (< 5.0 myr for the Northern Calcareous Alps to 10 myr for the Helvetic Alps) caused similar VR/KI trends, but disequilibrium is suggested by weaker regression parameters. The following correlation is calculated for a moderate geotherm (55 to 74 mWm2, mean = 61 mWm2) and normal temperature gradient conditions (25 to 35 °Ckm−1): KI = 1.134e−0.305VR, (R2 = 0.880, n = 462) with VR given as %Rmax, KI as Δ°2θ (limited to values between 0.2 to 1.0 Δ°2θ). With increasing depth (z) a VR gradient of 1.4 ± 0.2%Rmaxkm−1 is determined and a KI gradient of 0.09 ± 0.002 Δ°2θ km−1 is observed. The study illustrates that a normal geotherm can be described by VR/KI correlation, even if different heating episodes may occur. For the detection of a poly-phase or plurifacial thermal history, several indices of clay minerals and organic matter with very different kinetics should be used, as e.g. demonstrated by strong differences in smectite content at equal VR/KI values versus structural depth. A specific interest is given to the correlation of vitrinite like solid bitumen reflectance as an alternative method to VR, the persistent preservation of liptinite macerals and the stability range of clay minerals and sub-greenschist facies critical minerals compared with VR/KI data. Until now, despite the Alps in this study, system","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"24 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the tectonic evolution of the Dinarides—Alps—Pannonian Basin transition zone: insights from structural analysis and low-temperature thermochronology from Ivanščica Mt., NW Croatia 揭示迪纳里德斯-阿尔卑斯-潘诺尼亚盆地过渡带的构造演化:从克罗地亚西北部伊万希察山的构造分析和低温热年代学中获得的启示
IF 3.1 2区 地球科学
Swiss Journal of Geosciences Pub Date : 2024-09-02 DOI: 10.1186/s00015-024-00464-5
Matija Vukovski, Marko Špelić, Duje Kukoč, Tamara Troskot-Čorbić, Tonći Grgasović, Damir Slovenec, Bruno Tomljenović
{"title":"Unravelling the tectonic evolution of the Dinarides—Alps—Pannonian Basin transition zone: insights from structural analysis and low-temperature thermochronology from Ivanščica Mt., NW Croatia","authors":"Matija Vukovski, Marko Špelić, Duje Kukoč, Tamara Troskot-Čorbić, Tonći Grgasović, Damir Slovenec, Bruno Tomljenović","doi":"10.1186/s00015-024-00464-5","DOIUrl":"https://doi.org/10.1186/s00015-024-00464-5","url":null,"abstract":"A comprehensive study, including geological mapping, structural and thermochronological analysis, has been carried out on Ivanščica Mountain (NW Croatia), with the aim to reconstruct the tectonic history of the Dinarides, Southern/Eastern Alps and Pannonian Basin transitional zone. Implementation of structural and thermochronological methods enabled a subdivision of Ivanščica Mt. into two structural domains (from bottom to top): Ivanščica Parautochthon and Ivanščica Imbricate Fan and Cenozoic sedimentary cover. In addition, a sequence of deformational events in tectonic history of this transitional zone is proposed, comprising three extensional and four contractional events starting from Middle Triassic until present times. The two oldest deformational events indicate Middle Triassic (D1) and Early Jurassic (D2) extensional pulses and only occur in volcano-sedimentary successions of the Ivanščica Mt. The oldest contractional event (D3) is related to the obduction of a Neotethyan ophiolitic mélange over an Upper Triassic to Lower Cretaceous succession of the eastern margin of the Adriatic microplate, which resulted in thermal overprint of the Ivanščica Imbricate Fan structural domain in Berriasian—Valanginian times (~ 140 Ma). This event was soon followed by a second contractional event (D4), which resulted in thrusting and imbrication of the Adriatic passive margin successions together with previously emplaced ophiolitic mélange, thermal overprint of the footwall successions, fast exhumation and erosion. Apatite fission track data together with syn-tectonic deposits indicate an Hauterivian to Albian age of this D4 event (~ 133–100 Ma). These Mesozoic structures were dextrally rotated in post-Oligocene times and brought from the initially typically Dinaridic SE striking and SW verging structures to the recent SW striking and NW verging structures. The following extensional event (D5) is associated with the formation of SE striking and mostly NE dipping normal listric faults, and ENE striking dextral faults accommodating top-NE extension in the Pannonian Basin. Deformations were coupled with hanging wall sedimentation of Ottnangian to middle Badenian (middle Burdigalian to upper Langhian; ~ 18–14 Ma) syn-rift deposit as observed from the reflection seismic and well data. A short-lasting contraction (D6) was registered in the late Sarmatian (late Serravallian; ~ 12 Ma). The youngest documented deformational event (D7) resulted in reactivation of ENE striking dextral faults, formation of SE striking dextral faults as well as the formation of E to ENE trending folds and reverse faults. This event corresponds to late Pannonian (late Messinian; ~ 6 Ma) to Present NNW-SSE contraction driven by the indentation and counterclockwise rotation of Adriatic microplate. Recognized tectonic events and their timings indicate that Ivanščica was mainly affected by deformational phases related to the Mesozoic evolution of the Neotethys Ocean as well as Cenozoic openi","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"43 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue: Evolution of collisional orogens in space and time—the Alpine-Himalayan system in 4 dimensions 特刊:碰撞造山运动在空间和时间上的演变--阿尔卑斯-喜马拉雅四维系统
IF 3.1 2区 地球科学
Swiss Journal of Geosciences Pub Date : 2024-08-29 DOI: 10.1186/s00015-024-00466-3
Chiara Montomoli, Salvatore Iaccarino, Jean-Luc Epard, Paola Manzotti
{"title":"Special Issue: Evolution of collisional orogens in space and time—the Alpine-Himalayan system in 4 dimensions","authors":"Chiara Montomoli, Salvatore Iaccarino, Jean-Luc Epard, Paola Manzotti","doi":"10.1186/s00015-024-00466-3","DOIUrl":"https://doi.org/10.1186/s00015-024-00466-3","url":null,"abstract":"<p>This Special Issue of the Swiss Journal of Geosciences entitled “<i>Evolution of collisional orogens in space and time: the Alpine-Himalayan system in 4 dimensions</i>”, was proposed during the joint meeting “Geosciences for a sustainable future” organized by the Società Geologica Italiana and Società Italiana di Mineralogia e Petrografia held in Turin (Italy) in September 2022.</p><p>The issue focuses on the evolution of collisional orogens through a multidisciplinary approach. As a matter of fact, continental plate collisions give rise to collisional-related orogenic belts that are some of the most spectacular and dominant features on our planet.</p><p>During collision of continental plates, considerable deformation occurs with large scale overthrusting, burial and metamorphism of continental lithosphere portions. The final anatomy and the shape of collisional belts are highly diverse, due to the interactions of several controlling factors, including the pre-collisional tectonic history, the rate and the angle of convergence, the mechanical strength and thermal state of the involved colliding plates.</p><p>The youngest collisional system on Earth is the Alpine-Himalayan belt, extending from Spain to Southeast Asia. Its general structure was first described by Emile Argand in \"La tectonique de l’Asie\". On the occasion of the centenary of Argand’s work, presented during the XIII International Geological congress in Belgium (August 10, 1922), this thematic volume aims to provide an updated view on the Alpine-Himalayan geology.</p><p>This Special Issue collects multidisciplinary contributions focusing on the Alpine-Himalayan system, dealing with the reconstruction of the tectonic architecture at different scales, integrating field mapping to microscale and describing the tectono-metamorphic evolution.</p><p>The papers included in this collection span from the Himalaya to the Western, Central and Ligurian Alps and also include a paper on the Alborz Mountains in Iran.</p><p>The publication by Robyr (2023) brings us in the Himalayan belt (Miyar Valley, North-West India) and focuses on the old history of the belt studying the pre-Himalayan metamorphism of the metamorphic core of the chain, until now strongly debated. Through phase petrology and microtectonics studies, combined with valuable field data, Robyr demonstrates the existence of a pre-Himalayan orogenic cycle.</p><p>Pantet et al. (2024), focus on the region surrounding the Zermatt area (SW Switzerland and NW Italy) where continental and oceanic units are strongly imbricated. Starting from a very detailed field mapping, they focus on the structure and stratigraphy of the Permian-Jurassic continent‑derived Faisceau Vermiculaire series and associated non-ophiolitic Upper Cretaceous calcschists (Série Rousse), both intercalated within ophiolitic units. They were able to reconstruct the architecture of the Briançonnais-Prepiemont palaeomargin before the onset of Alpine deformation and the struct","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"51 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ediacaran to Jurassic geodynamic evolution of the Alborz Mountains, north Iran: geochronological data from the Gasht Metamorphic Complex 伊朗北部阿尔伯兹山脉埃迪卡拉纪至侏罗纪地球动力演化:来自加什特变质岩群的地质年代数据
IF 3.1 2区 地球科学
Swiss Journal of Geosciences Pub Date : 2024-08-28 DOI: 10.1186/s00015-024-00465-4
Leila Rezaei, Martin J. Timmerman, Uwe Altenberger, Mohssen Moazzen, Franziska D. H. Wilke, Christina Günter, Masafumi Sudo, Jiří Sláma
{"title":"Ediacaran to Jurassic geodynamic evolution of the Alborz Mountains, north Iran: geochronological data from the Gasht Metamorphic Complex","authors":"Leila Rezaei, Martin J. Timmerman, Uwe Altenberger, Mohssen Moazzen, Franziska D. H. Wilke, Christina Günter, Masafumi Sudo, Jiří Sláma","doi":"10.1186/s00015-024-00465-4","DOIUrl":"https://doi.org/10.1186/s00015-024-00465-4","url":null,"abstract":"The Alborz Mountains in north Iran underwent several tectono-metamorphic events during opening and closure of the Palaeotethys and Neotethys Oceans. These events are recorded by rare and discontinuously exposed metamorphic rocks, such as the HP-LT Asalem-Shanderman Complex and the Gasht Metamorphic Complex (GMC), that are considered to have been metamorphosed during the closure of the Palaeotethys Ocean. The GMC comprises poorly exposed metasediments and amphibolites metamorphosed under greenschist- to amphibolite-facies conditions, along with smaller volumes of granites. Different dating methods were applied to selected samples of the GMC basement to constrain the geological evolution of this part of the Alborz Mountains. A metagranite yielded two LA-ICP-MS U–Pb zircon ages of 638.4 ± 4.1 Ma and 590.3 ± 4.8 Ma that possibly date protolith crystallisation and later deformation and metamorphism, respectively, and a granite yielded a late Ediacaran 551 ± 2.5 Ma U–Pb zircon crystallisation age. A northern provenance from the basement to the South Caspian Basin can neither be established nor ruled out because no age data are available for this unit. Derivation of the GMC from Turan Block basement is unlikely, as this has a different crustal makeup and is probably composed of Paleoproterozoic and early Neoproterozoic material. The zircon ages are similar to published ages from the Arabian-Nubian Shield, indicating that this part of the Alborz basement may have belonged to the northern margin of Gondwana in the Neoproterozoic before rifting and drifting away along with other Iranian blocks (the Cimmerian terranes) during opening of the Neotethys Ocean. Chemical Th-U-total Pb ages for metamorphic monazites from two metapelite samples yielded a very large range of spot ages, of which c. 80% falls between 200 and 250 Ma, that do not allow to distinguish between Eo-Cimmerian and Main Cimmerian events in the GMC. However, they may indicate that the amphibolite-facies peak metamorphism of the GMC occurred sometime in the Triassic, in any case much later than the Carboniferous metamorphism in the neighbouring Asalem-Shanderman Metamorphic Complex to the north. Peak-metamorphic amphibole from amphibolite, retrograde white mica and foliation-defining biotite from metapelites and magmatic white mica from granite yielded much younger 175.1 ± 0.5 to 177.0 ± 0.4 Ma 40Ar/39Ar plateau ages. The Toarcian 40Ar/39Ar ages for minerals with different nominal closure temperatures reflect very rapid cooling of GMC basement below the Shemshak Group due to extension-triggered uplift. This late Toarcian to Aalenian extension event can be correlated with the regional Mid-Cimmerian unconformity of mid-Bajocian age (c. 170 Ma) that resulted from the tectonic movements causing rapid uplift and erosion. Extension probably started in the western Alborz Mountains in the Toarcian, migrated eastward, and culminated in the Aalenian in the eastern Alborz with the formation of a deep-mari","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"39 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geochronology, geochemistry, and geological evolution of the Troiseck-Floning and Rosskogel nappes (Eastern Alps): unraveling parallels between the Eastern Alps and Western Carpathians 特罗伊塞克-弗洛宁和罗斯科格尔山系(东阿尔卑斯山脉)的地质年代、地球化学和地质演化:揭示东阿尔卑斯山脉和西喀尔巴阡山脉之间的相似之处
IF 3.1 2区 地球科学
Swiss Journal of Geosciences Pub Date : 2024-06-17 DOI: 10.1186/s00015-024-00456-5
Martin K. Reiser, Ralf Schuster, Christoph Iglseder, Daniela Gallhofer, Josef Nievoll
{"title":"Geochronology, geochemistry, and geological evolution of the Troiseck-Floning and Rosskogel nappes (Eastern Alps): unraveling parallels between the Eastern Alps and Western Carpathians","authors":"Martin K. Reiser, Ralf Schuster, Christoph Iglseder, Daniela Gallhofer, Josef Nievoll","doi":"10.1186/s00015-024-00456-5","DOIUrl":"https://doi.org/10.1186/s00015-024-00456-5","url":null,"abstract":"The Troiseck-Floning and Rosskogel nappes are part of the Austroalpine Unit in the eastern part of the Eastern Alps. The nappes are in tectonic contact and comprise Permian to Mesozoic lower greenschist facies metamorphic metasediments, but only the Troiseck-Floning Nappe consists of a pre-Permian crystalline basement (Troiseck Complex) as well. LA-ICP-MS U–Pb zircon ages, Rb–Sr biotite ages and geochemical data unravel the geological evolution of these tectonic units from Neoproterozoic to Mesozoic times. Detrital U–Pb zircon analyses from siliciclastic metasediments of the Troiseck Complex indicate a late Ediacaran to early Cambrian deposition age of the volcanoclastic sequence. The age distribution correlates with a position along the northeastern Gondwana margin. A late Cambrian crystallization age (502.4 ± 6.8 Ma) of granitic intrusions together with evidence for Late Cambrian/Ordovician magmatism and metamorphism indicate a position at an active plate margin. Polyphase overprinting during the Variscan orogeny is recorded by Late Devonian/early Carboniferous pegmatite dikes (~ 353 Ma) that formed after an early Variscan event, while Pennsylvanian ages of overgrowth rims and inherited grains (~ 320 Ma) are evidence for late Variscan metamorphism. Rhyolitic to andesitic volcanic rocks from the Troiseck-Floning and Rosskogel nappes (271–264 Ma) concomitant with intrusions of porphyric granitoids now transformed to augen gneiss (271 Ma) yield evidence for Permian rift-related magmatism that is widely reported from the Eastern Alps and Western Carpathians. Rb–Sr biotite ages (75–74 Ma) indicate Late Cretaceous cooling below c. 300 °C. This relates to Late Cretaceous exhumation of the Troiseck-Floning Nappe following an Eo-Alpine metamorphic overprint at lower greenschist-facies metamorphic conditions. Based on the similar lithostratigraphy, analogous geological evolution and structure, the Troiseck-Floning Nappe represents the lateral extension of the Seckau Nappe. The new dataset also allows for correlations with other basement complexes that occur in the Western Carpathians.","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"20 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continent-derived metasediments (Cimes Blanches and Frilihorn) within the ophiolites around Zermatt: relations with the Mischabel backfold and Mont Fort nappe (Pennine Alps) 采尔马特周围蛇绿岩中的大陆源变质岩(Cimes Blanches和Frilihorn):与米沙贝尔背褶和蒙特堡岩层(宾夕法尼亚阿尔卑斯山)的关系
IF 3.1 2区 地球科学
Swiss Journal of Geosciences Pub Date : 2024-06-04 DOI: 10.1186/s00015-024-00455-6
Adrien Pantet, Jean-Luc Epard, Henri Masson
{"title":"Continent-derived metasediments (Cimes Blanches and Frilihorn) within the ophiolites around Zermatt: relations with the Mischabel backfold and Mont Fort nappe (Pennine Alps)","authors":"Adrien Pantet, Jean-Luc Epard, Henri Masson","doi":"10.1186/s00015-024-00455-6","DOIUrl":"https://doi.org/10.1186/s00015-024-00455-6","url":null,"abstract":"The region surrounding Zermatt (SW Switzerland and NW Italy) displays some classic examples of imbrications between continental and oceanic units. In particular, the studied units, called Cimes Blanches and Frilihorn or Faisceau Vermiculaire, consist of a set of thin bands of continent-derived metasediments intercalated at different levels within the ocean-derived units. These bands are locally reduced to only one meter thick but can be traced for several tens to more than one hundred kilometers across the Pennine Alps. The mechanisms leading to such imbrications are a long-standing and still-debated question. Based on detailed mapping and structural analysis of key areas, we present new data on the structure and stratigraphy of the Faisceau Vermiculaire in the area surrounding Zermatt, with particular focus on the Täschalpen sector, where the Faisceau Vermiculaire is locally in contact with basement units. Our observations allow: (i) to confirm the presence of widespread breccias of probable Jurassic age in the Faisceau Vermiculaire; (ii) to interpret the contacts between the Faisceau Vermiculaire and the overlying non-ophiolitic Schistes Lustrés (Série Rousse) as stratigraphic; (iii) to show that the stratigraphy of the Faisceau Vermiculaire and associated Série Rousse contrasts strongly with the cover of the Siviez-Mischabel nappe and that these sequences originate from different paleogeographic domains (Prepiemont basin and Briançonnais platform respectively); (iv) to interpret as stratigraphic the contact of the Faisceau Vermiculaire and the Série Rousse with the basement forming the Alphubel anticline; the local unconformity is interpreted as the result of the activity of synsedimentary Jurassic normal paleofaults; (v) to highlight the trace of a major Jurassic normal fault, that should have marked an abrupt thinning of the paleomargin; it corresponds now to the contact between the Faisceau Vermiculaire (and associated Série Rousse) and the Siviez-Mischabel basement in the hinge of the Mischabel backfold. We propose a new tectonic scheme for the structure of the Faisceau Vermiculaire and adjacent units involving an early northward folding of the Faisceau Vermiculaire with the Série Rousse and the ophiolitic Schistes Lustrés of the Tsaté nappe, followed by major backfolding responsible for the southward emplacement of these units above the HP Zermatt-Saas and Monte Rosa nappes. Our study at regional scale shows that the group formed by the Alphubel basement, the Faisceau Vermiculaire and the Série Rousse share a tectonic position and stratigraphic sequences identical to those of the Mont Fort nappe, which outcrops on the other side of the Dent Blanche klippe. It leads to the proposition that this group constitutes the eastern extension of the Mont Fort nappe.","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"84 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct mineral content prediction from drill core images via transfer learning 通过迁移学习直接预测钻芯图像中的矿物含量
IF 3.1 2区 地球科学
Swiss Journal of Geosciences Pub Date : 2024-05-07 DOI: 10.1186/s00015-024-00458-3
Romana Boiger, Sergey V. Churakov, Ignacio Ballester Llagaria, Georg Kosakowski, Raphael Wüst, Nikolaos I. Prasianakis
{"title":"Direct mineral content prediction from drill core images via transfer learning","authors":"Romana Boiger, Sergey V. Churakov, Ignacio Ballester Llagaria, Georg Kosakowski, Raphael Wüst, Nikolaos I. Prasianakis","doi":"10.1186/s00015-024-00458-3","DOIUrl":"https://doi.org/10.1186/s00015-024-00458-3","url":null,"abstract":"Deep subsurface exploration is important for mining, oil and gas industries, as well as in the assessment of geological units for the disposal of chemical or nuclear waste, or the viability of geothermal energy systems. Typically, detailed examinations of subsurface formations or units are performed on cuttings or core materials extracted during drilling campaigns, as well as on geophysical borehole data, which provide detailed information about the petrophysical properties of the rocks. Depending on the volume of rock samples and the analytical program, the laboratory analysis and diagnostics can be very time-consuming. This study investigates the potential of utilizing machine learning, specifically convolutional neural networks (CNN), to assess the lithology and mineral content solely from analysis of drill core images, aiming to support and expedite the subsurface geological exploration. The paper outlines a comprehensive methodology, encompassing data preprocessing, machine learning methods, and transfer learning techniques. The outcome reveals a remarkable 96.7% accuracy in the classification of drill core segments into distinct formation classes. Furthermore, a CNN model was trained for the evaluation of mineral content using a learning data set from multidimensional log analysis data (silicate, total clay, carbonate). When benchmarked against laboratory XRD measurements on samples from the cores, both the advanced multidimensional log analysis model and the neural network approach developed here provide equally good performance. This work demonstrates that deep learning and particularly transfer learning can support extracting petrophysical properties, including mineral content and formation classification, from drill core images, thus offering a road map for enhancing model performance and data set quality in image-based analysis of drill cores.","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"67 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140888225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facies architecture, geochemistry and petrogenesis of Middle Triassic volcaniclastic deposits of Mt. Ivanščica (NW Croatia): evidence of bimodal volcanism in the Alpine-Dinaridic transitional zone 伊万希察山(克罗地亚西北部)中三叠纪火山碎屑沉积物的面貌结构、地球化学和岩石成因:阿尔卑斯-第纳尔过渡带双峰火山活动的证据
IF 3.1 2区 地球科学
Swiss Journal of Geosciences Pub Date : 2024-04-04 DOI: 10.1186/s00015-024-00453-8
Duje Smirčić, Matija Vukovski, Damir Slovenec, Duje Kukoč, Branimir Šegvić, Marija Horvat, Mirko Belak, Tonći Grgasović, Luka Badurina
{"title":"Facies architecture, geochemistry and petrogenesis of Middle Triassic volcaniclastic deposits of Mt. Ivanščica (NW Croatia): evidence of bimodal volcanism in the Alpine-Dinaridic transitional zone","authors":"Duje Smirčić, Matija Vukovski, Damir Slovenec, Duje Kukoč, Branimir Šegvić, Marija Horvat, Mirko Belak, Tonći Grgasović, Luka Badurina","doi":"10.1186/s00015-024-00453-8","DOIUrl":"https://doi.org/10.1186/s00015-024-00453-8","url":null,"abstract":"During the Middle Triassic, intensive volcanic activity took place along the eastern margin of Pangea, including the Greater Adria promontory, due to the Neotethyan oceanization. This resulted in the formation of various volcanic and volcaniclastic rock types. The region of NW Croatia, acting as a transition zone between the Southern Alps and the Dinarides, showcases the outcrops of these rocks. The present study investigates the facies of volcaniclastic rocks, the distribution of those facies, formation processes, as well as the genesis of the primary magma to gain a better understanding of the complex geodynamics of this region during the Middle Triassic. Six profiles across the Vudelja quarry front were surveyed using drone imaging and samples were collected for detailed petrographic and geochemical analyses. Two groups of volcaniclastic rocks were identified—mafic and intermediate/felsic. The former is represented by (I) autoclastic effusive facies and (II) resedimented autoclastic facies, while the latter is represented by (III) secondary pyroclastic facies. Mafic volcaniclastics were generated through basaltic effusions in marine environments, fragmentation in contact with seawater, mixing with shallow marine carbonate clasts, and subsequent redeposition in deeper marine areas. The secondary pyroclastic facies (III) consists of a regionally distributed felsic Pietra Verde tuff whose deposits may be related to pyroclastic density currents and syn-eruptive resedimentation by turbidite-like currents. Geochemical data indicate that parental magmas responsible for generating the mafic volcaniclastics had a calc-alkaline composition and originated in ensialic and mature arc settings of an active continental margin. The observed chemical composition is likely inherited from older, arc-related lithologies, associated with the subduction of the Paleotethys Ocean. Parental magmas are thought to have formed during continental rifting of the passive Middle Triassic margins of the Greater Adria through (i) partial melting of the heterogeneous lithospheric mantle, which had been metasomatized during an earlier Hercynian subduction, and (ii) subordinate processes related to the melting of the upper continental crust and subsequent fractionation. Ar/Ar dating on plagioclase separates yielded an age of 244.5 ± 2.8 Ma for mafic volcaniclastics. This aligns well with biostratigraphic ages of felsic tuffs which crop out on a broader regional scale of the Dinarides, the Southern Alps, and the Transdanubian Range. The overlapping ages obtained from radiometric dating of mafic volcaniclastics and biostratigraphic ages of the felsic Pietra Verde tuffs strongly suggest that the Greater Adria region experienced concurrent bimodal volcanism during the Middle Triassic.","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"9 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The North Penninic Bündnerschiefer and Flysch of the Prättigau (Swiss Alps) revisited 重访普拉提高(瑞士阿尔卑斯山)的北宾尼尼布恩德施费尔和弗莱施河
IF 3.1 2区 地球科学
Swiss Journal of Geosciences Pub Date : 2024-03-26 DOI: 10.1186/s00015-024-00454-7
Wilfried Winkler
{"title":"The North Penninic Bündnerschiefer and Flysch of the Prättigau (Swiss Alps) revisited","authors":"Wilfried Winkler","doi":"10.1186/s00015-024-00454-7","DOIUrl":"https://doi.org/10.1186/s00015-024-00454-7","url":null,"abstract":"During the re-mapping of the area for the Geological Atlas of Switzerland, a significant stratigraphic unconformity was discovered in the North Penninic (Valais) Bündnerschiefer and the Flysch series of the northern Prättigau. It separates different units of the Cretaceous Bündnerschiefer from the Palaeogene Flysch. We explain this observation by a basin conversion from extension to compression, which caused the initial deformation of the Bündnerschiefer in an accretionary wedge. Interlinked return-flow has created a new heterogeneous substrate for the flysch sediments and explains the different types of unconformities. The basin conversion coincided with high-grade metamorphism in the vicinity of the the South Penninic suture and the Austroalpine units, and the increased exhumation in the Austroalpine nappe stack. Detrital zircon dating confirms also a change from European to Austroalpine detrital sources in the flysch sandstones. We discuss a palaeotectonic model leading to hP/lT metamorphism of the Bündnerschiefer in the Late Eocene (c. 42 Ma). It appears that the flysch formations were also involved, but to a lesser degree by tectonic deformation from the late Early Eocene onwards, as the pervasive folding characteristic of the Bündnerschiefer is absent. This has been followed by a phase of S-directed backfolding. During the Oligocene and Miocene, more extensive deformation occurred by SE to NW compression and finally by probable westward thrusting and folding. Our main theme is the transition from passive to active continental margins, which in Alpine plate tectonic framework corresponds to the transition to flysch sedimentation by basin conversion. Our results show that the simultaneity of the transition from extension to compression, as indicated by the accumulation of flysch, shifted in time from south to north in the Alpine Tethys.","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"32 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信