Ming Chang, Shuntaro Suzuki, Takahiro Kurose, Takuya Ibaraki
{"title":"Pretraining alpha rhythm enhancement by neurofeedback facilitates short-term perceptual learning and improves visual acuity by facilitated consolidation","authors":"Ming Chang, Shuntaro Suzuki, Takahiro Kurose, Takuya Ibaraki","doi":"10.3389/fnrgo.2024.1399578","DOIUrl":"https://doi.org/10.3389/fnrgo.2024.1399578","url":null,"abstract":"Learning through perceptual training using the Gabor patch (GP) has attracted attention as a new vision restoration technique for myopia and age-related deterioration of visual acuity (VA). However, the task itself is monotonous and painful and requires numerous training sessions and some time before being effective, which has been a challenge for its widespread application. One effective means of facilitating perceptual learning is the empowerment of EEG alpha rhythm in the sensory cortex before neurofeedback (NF) training; however, there is a lack of evidence for VA.We investigated whether four 30-min sessions of GP training, conducted over 2 weeks with/without EEG NF to increase alpha power (NF and control group, respectively), can improve vision in myopic subjects. Contrast sensitivity (CS) and VA were measured before and after each GP training.The NF group showed an improvement in CS at the fourth training session, not observed in the control group. In addition, VA improved only in the NF group at the third and fourth training sessions, this appears as a consolidation effect (maintenance of the previous training effect). Participants who produced stronger alpha power during the third training session showed greater VA recovery during the fourth training session.These results indicate that enhanced pretraining alpha empowerment strengthens the subsequent consolidation of perceptual learning and that even a short period of GP training can have a positive effect on VA recovery. This simple protocol may facilitate use of a training method to easily recover vision.","PeriodicalId":492176,"journal":{"name":"Frontiers in neuroergonomics","volume":"28 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141266521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bringing together multimodal and multilevel approaches to study the emergence of social bonds between children and improve social AI","authors":"Julie Bonnaire, Guillaume Dumas, Justine Cassell","doi":"10.3389/fnrgo.2024.1290256","DOIUrl":"https://doi.org/10.3389/fnrgo.2024.1290256","url":null,"abstract":"This protocol paper outlines an innovative multimodal and multilevel approach to studying the emergence and evolution of how children build social bonds with their peers, and its potential application to improving social artificial intelligence (AI). We detail a unique hyperscanning experimental framework utilizing functional near-infrared spectroscopy (fNIRS) to observe inter-brain synchrony in child dyads during collaborative tasks and social interactions. Our proposed longitudinal study spans middle childhood, aiming to capture the dynamic development of social connections and cognitive engagement in naturalistic settings. To do so we bring together four kinds of data: the multimodal conversational behaviors that dyads of children engage in, evidence of their state of interpersonal rapport, collaborative performance on educational tasks, and inter-brain synchrony. Preliminary pilot data provide foundational support for our approach, indicating promising directions for identifying neural patterns associated with productive social interactions. The planned research will explore the neural correlates of social bond formation, informing the creation of a virtual peer learning partner in the field of Social Neuroergonomics. This protocol promises significant contributions to understanding the neural basis of social connectivity in children, while also offering a blueprint for designing empathetic and effective social AI tools, particularly for educational contexts.","PeriodicalId":492176,"journal":{"name":"Frontiers in neuroergonomics","volume":"1 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancing passive BCIs: a feasibility study of two temporal derivative features and effect size-based feature selection in continuous online EEG-based machine error detection","authors":"Yanzhao Pan, Thorsten O. Zander, Marius Klug","doi":"10.3389/fnrgo.2024.1346791","DOIUrl":"https://doi.org/10.3389/fnrgo.2024.1346791","url":null,"abstract":"The emerging integration of Brain-Computer Interfaces (BCIs) in human-robot collaboration holds promise for dynamic adaptive interaction. The use of electroencephalogram (EEG)-measured error-related potentials (ErrPs) for online error detection in assistive devices offers a practical method for improving the reliability of such devices. However, continuous online error detection faces challenges such as developing efficient and lightweight classification techniques for quick predictions, reducing false alarms from artifacts, and dealing with the non-stationarity of EEG signals. Further research is essential to address the complexities of continuous classification in online sessions. With this study, we demonstrated a comprehensive approach for continuous online EEG-based machine error detection, which emerged as the winner of a competition at the 32nd International Joint Conference on Artificial Intelligence. The competition consisted of two stages: an offline stage for model development using pre-recorded, labeled EEG data, and an online stage 3 months after the offline stage, where these models were tested live on continuously streamed EEG data to detect errors in orthosis movements in real time. Our approach incorporates two temporal-derivative features with an effect size-based feature selection technique for model training, together with a lightweight noise filtering method for online sessions without recalibration of the model. The model trained in the offline stage not only resulted in a high average cross-validation accuracy of 89.9% across all participants, but also demonstrated remarkable performance during the online session 3 months after the initial data collection without further calibration, maintaining a low overall false alarm rate of 1.7% and swift response capabilities. Our research makes two significant contributions to the field. Firstly, it demonstrates the feasibility of integrating two temporal derivative features with an effect size-based feature selection strategy, particularly in online EEG-based BCIs. Secondly, our work introduces an innovative approach designed for continuous online error prediction, which includes a straightforward noise rejection technique to reduce false alarms. This study serves as a feasibility investigation into a methodology for seamless error detection that promises to transform practical applications in the domain of neuroadaptive technology and human-robot interaction.","PeriodicalId":492176,"journal":{"name":"Frontiers in neuroergonomics","volume":"10 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raquel Delgado-Aranda, G. Dorantes-Méndez, Anna M. Bianchi, J. Kortelainen, Stefania Coelli, Jorge Jimenez-Cruz, Martin O. Mendez
{"title":"Assessing cardiovascular stress based on heart rate variability in female shift workers: a multiscale-multifractal analysis approach","authors":"Raquel Delgado-Aranda, G. Dorantes-Méndez, Anna M. Bianchi, J. Kortelainen, Stefania Coelli, Jorge Jimenez-Cruz, Martin O. Mendez","doi":"10.3389/fnrgo.2024.1382919","DOIUrl":"https://doi.org/10.3389/fnrgo.2024.1382919","url":null,"abstract":"Sleep-wake cycle disruption caused by shift work may lead to cardiovascular stress, which is observed as an alteration in the behavior of heart rate variability (HRV). In particular, HRV exhibits complex patterns over different time scales that help to understand the regulatory mechanisms of the autonomic nervous system, and changes in the fractality of HRV may be associated with pathological conditions, including cardiovascular disease, diabetes, or even psychological stress. The main purpose of this study is to evaluate the multifractal-multiscale structure of HRV during sleep in healthy shift and non-shift workers to identify conditions of cardiovascular stress that may be associated with shift work.The whole-sleep HRV signal was analyzed from female participants: eleven healthy shift workers and seven non-shift workers. The HRV signal was decomposed into intrinsic mode functions (IMFs) using the empirical mode decomposition method, and then the IMFs were analyzed using the multiscale-multifractal detrended fluctuation analysis (MMF-DFA) method. The MMF-DFA was applied to estimate the self-similarity coefficients, α(q, τ), considering moment orders (q) between –5 and +5 and scales (τ) between 8 and 2,048 s. Additionally, to describe the multifractality at each τ in a simple way, a multifractal index, MFI(τ), was computed.Compared to non-shift workers, shift workers presented an increase in the scaling exponent, α(q, τ), at short scales (τ < 64 s) with q < 0 in the high-frequency component (IMF1, 0.15–0.4 Hz) and low-frequency components (IMF2–IMF3, 0.04–0.15 Hz), and with q> 0 in the very low frequencies (IMF4, < 0.04 Hz). In addition, at large scales (τ> 1,024 s), a decrease in α(q, τ) was observed in IMF3, suggesting an alteration in the multifractal dynamic. MFI(τ) showed an increase at small scales and a decrease at large scales in IMFs of shift workers.This study helps to recognize the multifractality of HRV during sleep, beyond simply looking at indices based on means and variances. This analysis helps to identify that shift workers show alterations in fractal properties, mainly on short scales. These findings suggest a disturbance in the autonomic nervous system induced by the cardiovascular stress of shift work.","PeriodicalId":492176,"journal":{"name":"Frontiers in neuroergonomics","volume":" 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140995364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pushpinder Walia, Yaoyu Fu, Jack Norfleet, Steven D. Schwaitzberg, Xavier Intes, S. De, Lora Cavuoto, Anirban Dutta
{"title":"Brain-behavior analysis of transcranial direct current stimulation effects on a complex surgical motor task","authors":"Pushpinder Walia, Yaoyu Fu, Jack Norfleet, Steven D. Schwaitzberg, Xavier Intes, S. De, Lora Cavuoto, Anirban Dutta","doi":"10.3389/fnrgo.2023.1135729","DOIUrl":"https://doi.org/10.3389/fnrgo.2023.1135729","url":null,"abstract":"Transcranial Direct Current Stimulation (tDCS) has demonstrated its potential in enhancing surgical training and performance compared to sham tDCS. However, optimizing its efficacy requires the selection of appropriate brain targets informed by neuroimaging and mechanistic understanding. Previous studies have established the feasibility of using portable brain imaging, combining functional near-infrared spectroscopy (fNIRS) with tDCS during Fundamentals of Laparoscopic Surgery (FLS) tasks. This allows concurrent monitoring of cortical activations. Building on these foundations, our study aimed to explore the multi-modal imaging of the brain response using fNIRS and electroencephalogram (EEG) to tDCS targeting the right cerebellar (CER) and left ventrolateral prefrontal cortex (PFC) during a challenging FLS suturing with intracorporeal knot tying task. Involving twelve novices with a medical/premedical background (age: 22–28 years, two males, 10 females with one female with left-hand dominance), our investigation sought mechanistic insights into tDCS effects on brain areas related to error-based learning, a fundamental skill acquisition mechanism. The results revealed that right CER tDCS applied to the posterior lobe elicited a statistically significant (q < 0.05) brain response in bilateral prefrontal areas at the onset of the FLS task, surpassing the response seen with sham tDCS. Additionally, right CER tDCS led to a significant (p < 0.05) improvement in FLS scores compared to sham tDCS. Conversely, the left PFC tDCS did not yield a statistically significant brain response or improvement in FLS performance. In conclusion, right CER tDCS demonstrated the activation of bilateral prefrontal brain areas, providing valuable mechanistic insights into the effects of CER tDCS on FLS peformance. These insights motivate future investigations into the effects of CER tDCS on error-related perception-action coupling through directed functional connectivity studies.","PeriodicalId":492176,"journal":{"name":"Frontiers in neuroergonomics","volume":"56 41","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arindam Biswas, P. Mohammad, Sadhu Moka, Arash Takshi, A. Parthasarathy
{"title":"Non-invasive low-cost deep tissue blood flow measurement with integrated Diffuse Speckle Contrast Spectroscopy","authors":"Arindam Biswas, P. Mohammad, Sadhu Moka, Arash Takshi, A. Parthasarathy","doi":"10.3389/fnrgo.2023.1288922","DOIUrl":"https://doi.org/10.3389/fnrgo.2023.1288922","url":null,"abstract":"Diffuse Correlation Spectroscopy (DCS) is a widely used non-invasive measurement technique to quantitatively measure deep tissue blood flow. Conventional implementations of DCS use expensive single photon counters as detecting elements and optical probes with bulky fiber optic cables. In recent years, newer approaches to blood flow measurement such as Diffuse Speckle Contrast Analysis (DSCA) and Speckle Contrast Optical Spectroscopy (SCOS), have adapted speckle contrast analysis methods to simplify deep tissue blood flow measurements using cameras and single photon counting avalanche detector arrays as detectors. Here, we introduce and demonstrate integrated Diffuse Speckle Contrast Spectroscopy (iDSCS), a novel optical sensor setup which leverages diffuse speckle contrast analysis for probe-level quantitative measurement of tissue blood flow. iDSCS uses a standard photodiode configured in photovoltaic mode to integrate photon intensity fluctuations over multiple integration durations using a custom electronic circuit, as opposed to the high frequency sampling of photon counts with DCS. We show that the iDSCS device is sensitive to deep-tissue blood flow measurements with experiments on a human forearm and compare the sensitivity and dynamic range of the device to a conventional DCS instrument. The iDSCS device features a low-cost, low-power, small form factor instrument design that will enable wireless probe-level measurements of deep tissue blood flow.","PeriodicalId":492176,"journal":{"name":"Frontiers in neuroergonomics","volume":"26 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139445258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mobile fNIRS for exploring inter-brain synchrony across generations and time","authors":"Ryssa Moffat, Courtney E. Casale, Emily S. Cross","doi":"10.3389/fnrgo.2023.1260738","DOIUrl":"https://doi.org/10.3389/fnrgo.2023.1260738","url":null,"abstract":"While still relatively rare, longitudinal hyperscanning studies are exceptionally valuable for documenting changes in inter-brain synchrony, which may in turn underpin how behaviors develop and evolve in social settings. The generalizability and ecological validity of this experimental approach hinges on the selected imaging technique being mobile–a requirement met by functional near-infrared spectroscopy (fNIRS). fNIRS has most frequently been used to examine the development of inter-brain synchrony and behavior in child-parent dyads. In this position paper, we contend that dedicating attention to longitudinal and intergenerational hyperscanning stands to benefit the fields of social and cognitive neuroscience more broadly. We argue that this approach is particularly relevant for understanding the neural mechanisms underpinning intergenerational social dynamics, and potentially for benchmarking progress in psychological and social interventions, many of which are situated in intergenerational contexts. In line with our position, we highlight areas of intergenerational research that stand to be enhanced by longitudinal hyperscanning with mobile devices, describe challenges that may arise from measuring across generations in the real world, and offer potential solutions.","PeriodicalId":492176,"journal":{"name":"Frontiers in neuroergonomics","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139450847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Stuldreher, Erik van der Burg, Sebastien Velut, Alexander Toet, Demi E. van Os, Haruka Hiraguchi, M. Hogervorst, Elizabeth H. Zandstra, Jan B. F. van Erp, A. Brouwer
{"title":"Electrodermal activity as an index of food neophobia outside the lab","authors":"I. Stuldreher, Erik van der Burg, Sebastien Velut, Alexander Toet, Demi E. van Os, Haruka Hiraguchi, M. Hogervorst, Elizabeth H. Zandstra, Jan B. F. van Erp, A. Brouwer","doi":"10.3389/fnrgo.2023.1297722","DOIUrl":"https://doi.org/10.3389/fnrgo.2023.1297722","url":null,"abstract":"Understanding how food neophobia affects food experience may help to shift toward sustainable diets. Previous research suggests that individuals with higher food neophobia are more aroused and attentive when observing food-related stimuli. The present study examined whether electrodermal activity (EDA), as index of arousal, relates to food neophobia outside the lab when exposed to a single piece of food.The EDA of 153 participants was analyzed as part of a larger experiment conducted at a festival. Participants completed the 10-item Food Neophobia Scale. Subsequently, they saw three lids covering three foods: a hotdog labeled as “meat”, a hotdog labeled as “100% plant-based”, and tofu labeled as “100% plant-based”. Participants lifted the lids consecutively and the area-under-the-curve (AUC) of the skin conductance response (SCR) was captured between 20 s before and 20 s after each food reveal.We found a significant positive correlation between food neophobia and AUC of SCR during presentation of the first and second hotdog and a trend for tofu. These correlations remained significant even when only including the SCR data prior to the food reveal (i.e., an anticipatory response).The association between food neophobia and EDA indicates that food neophobic individuals are more aroused upon the presentation of food. We show for the first time that the anticipation of being presented with food already increased arousal for food neophobic individuals. These findings also indicate that EDA can be meaningfully determined using wearables outside the lab, in a relatively uncontrolled setting for single-trial analysis.","PeriodicalId":492176,"journal":{"name":"Frontiers in neuroergonomics","volume":"62 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139451641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Birte S. Löffler, H. Stecher, Arnd Meiser, Sebastian J. F. Fudickar, Andreas Hein, Christoph S. Herrmann
{"title":"Attempting to counteract vigilance decrement in older adults with brain stimulation","authors":"Birte S. Löffler, H. Stecher, Arnd Meiser, Sebastian J. F. Fudickar, Andreas Hein, Christoph S. Herrmann","doi":"10.3389/fnrgo.2023.1201702","DOIUrl":"https://doi.org/10.3389/fnrgo.2023.1201702","url":null,"abstract":"Against the background of demographic change and the need for enhancement techniques for an aging society, we set out to repeat a study that utilized 40-Hz transcranial alternating current stimulation (tACS) to counteract the slowdown of reaction times in a vigilance experiment but with participants aged 65 years and older. On an oscillatory level, vigilance decrement is linked to rising occipital alpha power, which has been shown to be downregulated using gamma-tACS.We applied tACS on the visual cortex and compared reaction times, error rates, and alpha power of a group stimulated with 40 Hz to a sham and a 5-Hz-stimulated control group. All groups executed two 30-min-long blocks of a visual task and were stimulated according to group in the second block. We hypothesized that the expected increase in reaction times and alpha power would be reduced in the 40-Hz group compared to the control groups in the second block (INTERVENTION).Statistical analysis with linear mixed models showed that reaction times increased significantly over time in the first block (BASELINE) with approximately 3 ms/min for the SHAM and 2 ms/min for the 5-Hz and 40-Hz groups, with no difference between the groups. The increase was less pronounced in the INTERVENTION block (1 ms/min for SHAM and 5-Hz groups, 3 ms/min for the 40-Hz group). Differences among groups in the INTERVENTION block were not significant if the 5-Hz or the 40-Hz group was used as the base group for the linear mixed model. Statistical analysis with a generalized linear mixed model showed that alpha power was significantly higher after the experiment (1.37 μV2) compared to before (1 μV2). No influence of stimulation (40 Hz, 5 Hz, or sham) could be detected.Although the literature has shown that tACS offers potential for older adults, our results indicate that findings from general studies cannot simply be transferred to an old-aged group. We suggest adjusting stimulation parameters to the neurophysiological features expected in this group. Next to heterogeneity and cognitive fitness, the influence of motivation and medication should be considered.","PeriodicalId":492176,"journal":{"name":"Frontiers in neuroergonomics","volume":"25 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139007818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shannon P. D. McGarry, Brittany N. Neilson, Noelle Brown, Kaylin D. Strong, Eric T. Greenlee, Martina I. Klein, Joseph T. Coyne
{"title":"An investigation of cardiac vagal tone over time and its relation to vigilance performance: a growth curve modeling approach","authors":"Shannon P. D. McGarry, Brittany N. Neilson, Noelle Brown, Kaylin D. Strong, Eric T. Greenlee, Martina I. Klein, Joseph T. Coyne","doi":"10.3389/fnrgo.2023.1244658","DOIUrl":"https://doi.org/10.3389/fnrgo.2023.1244658","url":null,"abstract":"Research over the last couple of decades has demonstrated a relationship between psychophysiological measures, specifically cardiac functions, and cognitive performance. Regulation of the cardiac system under parasympathetic control is commonly referred to as cardiac vagal tone and is associated with the regulation of cognitive and socioemotional states. The goal of the current study was to capture the dynamic relationship between cardiac vagal tone and performance in a vigilance task.We implemented a longitudinal growth curve modeling approach which unveiled a relationship between cardiac vagal tone and vigilance that was non-monotonic and dependent upon each person.The findings suggest that cardiac vagal tone may be a process-based physiological measure that further explains how the vigilance decrement manifests over time and differs across individuals. This contributes to our understanding of vigilance by modeling individual differences in cardiac vagal tone changes that occur over the course of the vigilance task.","PeriodicalId":492176,"journal":{"name":"Frontiers in neuroergonomics","volume":"33 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138980235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}