{"title":"GLFER-Net: a polyphonic sound source localization and detection network based on global-local feature extraction and recalibration","authors":"Mengzhen Ma, Ying Hu, Liang He, Hao Huang","doi":"10.1186/s13636-024-00356-4","DOIUrl":"https://doi.org/10.1186/s13636-024-00356-4","url":null,"abstract":"Polyphonic sound source localization and detection (SSLD) task aims to recognize the categories of sound events, identify their onset and offset times, and detect their corresponding direction-of-arrival (DOA), where polyphonic refers to the occurrence of multiple overlapping sound sources in a segment. However, vanilla SSLD methods based on convolutional recurrent neural network (CRNN) suffer from insufficient feature extraction. The convolutions with kernel of single scale in CRNN fail to adequately extract multi-scale features of sound events, which have diverse time-frequency characteristics. It results in that the extracted features lack fine-grained information helpful for the localization of sound sources. In response to these challenges, we propose a polyphonic SSLD network based on global-local feature extraction and recalibration (GLFER-Net), where the global-local feature (GLF) extractor is designed to extract the multi-scale global features through an omni-directional dynamic convolution (ODConv) layer and multi-scale feature extraction (MSFE) module. The local feature extraction (LFE) unit is designed for capturing detailed information. Besides, we design a feature recalibration (FR) module to emphasize the crucial features along multiple dimensions. On the open datasets of Task3 in DCASE 2021 and 2022 Challenges, we compared our proposed GLFER-Net with six and four SSLD methods, respectively. The results show that the GLFER-Net achieves competitive performance. The modules we designed are verified to be effective through a series of ablation experiments and visualization analyses.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"94 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tahira Kanwal, Rabbia Mahum, Abdul Malik AlSalman, Mohamed Sharaf, Haseeb Hassan
{"title":"Fake speech detection using VGGish with attention block","authors":"Tahira Kanwal, Rabbia Mahum, Abdul Malik AlSalman, Mohamed Sharaf, Haseeb Hassan","doi":"10.1186/s13636-024-00348-4","DOIUrl":"https://doi.org/10.1186/s13636-024-00348-4","url":null,"abstract":"While deep learning technologies have made remarkable progress in generating deepfakes, their misuse has become a well-known concern. As a result, the ubiquitous usage of deepfakes for increasing false information poses significant risks to the security and privacy of individuals. The primary objective of audio spoofing detection is to identify audio generated through numerous AI-based techniques. Several techniques for fake audio detection already exist using machine learning algorithms. However, they lack generalization and may not identify all types of AI-synthesized audios such as replay attacks, voice conversion, and text-to-speech (TTS). In this paper, a deep layered model, i.e., VGGish, along with an attention block, namely Convolutional Block Attention Module (CBAM) for spoofing detection, is introduced. Our suggested model successfully classifies input audio into two classes: Fake and Real, converting them into mel-spectrograms, and extracting their most representative features due to the attention block. Our model is a significant technique to utilize for audio spoofing detection due to a simple layered architecture. It captures complex relationships in audio signals due to both spatial and channel features present in an attention module. To evaluate the effectiveness of our model, we have conducted in-depth testing using the ASVspoof 2019 dataset. The proposed technique achieved an EER of 0.52% for Physical Access (PA) attacks and 0.07 % for Logical Access (LA) attacks.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"169 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automatic dysarthria detection and severity level assessment using CWT-layered CNN model","authors":"Shaik Sajiha, Kodali Radha, Dhulipalla Venkata Rao, Nammi Sneha, Suryanarayana Gunnam, Durga Prasad Bavirisetti","doi":"10.1186/s13636-024-00357-3","DOIUrl":"https://doi.org/10.1186/s13636-024-00357-3","url":null,"abstract":"Dysarthria is a speech disorder that affects the ability to communicate due to articulation difficulties. This research proposes a novel method for automatic dysarthria detection (ADD) and automatic dysarthria severity level assessment (ADSLA) by using a variable continuous wavelet transform (CWT) layered convolutional neural network (CNN) model. To determine their efficiency, the proposed model is assessed using two distinct corpora, TORGO and UA-Speech, comprising both dysarthria patients and healthy subject speech signals. The research study explores the effectiveness of CWT-layered CNN models that employ different wavelets such as Amor, Morse, and Bump. The study aims to analyze the models’ performance without the need for feature extraction, which could provide deeper insights into the effectiveness of the models in processing complex data. Also, raw waveform modeling preserves the original signal’s integrity and nuance, making it ideal for applications like speech recognition, signal processing, and image processing. Extensive analysis and experimentation have revealed that the Amor wavelet surpasses the Morse and Bump wavelets in accurately representing signal characteristics. The Amor wavelet outperforms the others in terms of signal reconstruction fidelity, noise suppression capabilities, and feature extraction accuracy. The proposed CWT-layered CNN model emphasizes the importance of selecting the appropriate wavelet for signal-processing tasks. The Amor wavelet is a reliable and precise choice for applications. The UA-Speech dataset is crucial for more accurate dysarthria classification. Advanced deep learning techniques can simplify early intervention measures and expedite the diagnosis process.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"19 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MIRACLE—a microphone array impulse response dataset for acoustic learning","authors":"Adam Kujawski, Art J. R. Pelling, Ennes Sarradj","doi":"10.1186/s13636-024-00352-8","DOIUrl":"https://doi.org/10.1186/s13636-024-00352-8","url":null,"abstract":"This work introduces a large dataset comprising impulse responses of spatially distributed sources within a plane parallel to a planar microphone array. The dataset, named MIRACLE, encompasses 856,128 single-channel impulse responses and includes four different measurement scenarios. Three measurement scenarios were conducted under anechoic conditions. The fourth scenario includes an additional specular reflection from a reflective panel. The source positions were obtained by uniformly discretizing a rectangular source plane parallel to the microphone for each scenario. The dataset contains three scenarios with a spatial resolution of $$23,textrm{mm}$$ at two different source-plane-to-array distances, as well as a scenario with a resolution of $$5,textrm{mm}$$ for the shorter distance. In contrast to existing room impulse response datasets, the accuracy of the provided source location labels is assessed and additional metadata, such as the directivity of the loudspeaker used for excitation, is provided. The MIRACLE dataset can be used as a benchmark for data-driven modelling and interpolation methods as well as for various acoustic machine learning tasks, such as source separation, localization, and characterization. Two timely applications of the dataset are presented in this work: the generation of microphone array data for data-driven source localization and characterization tasks and data-driven model order reduction.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"197 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimating the first and second derivatives of discrete audio data","authors":"Marcin Lewandowski","doi":"10.1186/s13636-024-00355-5","DOIUrl":"https://doi.org/10.1186/s13636-024-00355-5","url":null,"abstract":"A new method for estimating the first and second derivatives of discrete audio signals intended to achieve higher computational precision in analyzing the performance and characteristics of digital audio systems is presented. The method could find numerous applications in modeling nonlinear audio circuit systems, e.g., for audio synthesis and creating audio effects, music recognition and classification, time-frequency analysis based on nonstationary audio signal decomposition, audio steganalysis and digital audio authentication or audio feature extraction methods. The proposed algorithm employs the ordinary 7 point-stencil central-difference formulas with improvements that minimize the round-off and truncation errors. This is achieved by treating the step size of numerical differentiation as a regularization parameter, which acts as a decision threshold in all calculations. This approach requires shifting discrete audio data by fractions of the initial sample rate, which was obtained by fractional delay FIR filters designed with modified 11-term cosine-sum windows for interpolation and shifting of audio signals. The maximum relative error in estimating first and second derivatives of discrete audio signals are respectively in order of $$10^{-13}$$ and $$10^{-10}$$ over the entire audio band, which is close to double-precision floating-point accuracy for the first and better than single-precision floating-point accuracy for the second derivative estimation. Numerical testing showed that this performance of the proposed method is not influenced by the type of signal being differentiated (either stationary or nonstationary), and provides better results than other known differentiation methods, in the audio band up to 21 kHz.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"135 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeremiah Abimbola, Daniel Kostrzewa, Pawel Kasprowski
{"title":"Music time signature detection using ResNet18","authors":"Jeremiah Abimbola, Daniel Kostrzewa, Pawel Kasprowski","doi":"10.1186/s13636-024-00346-6","DOIUrl":"https://doi.org/10.1186/s13636-024-00346-6","url":null,"abstract":"Time signature detection is a fundamental task in music information retrieval, aiding in music organization. In recent years, the demand for robust and efficient methods in music analysis has amplified, underscoring the significance of advancements in time signature detection. In this study, we explored the effectiveness of residual networks for time signature detection. Additionally, we compared the performance of the residual network (ResNet18) to already existing models such as audio similarity matrix (ASM) and beat similarity matrix (BSM). We also juxtaposed with traditional algorithms such as support vector machine (SVM), random forest, K-nearest neighbor (KNN), naive Bayes, and that of deep learning models, such as convolutional neural network (CNN) and convolutional recurrent neural network (CRNN). The evaluation is conducted using Mel-frequency cepstral coefficients (MFCCs) as feature representations on the Meter2800 dataset. Our results indicate that ResNet18 outperforms all other models thereby showing the potential of deep learning models for accurate time signature detection.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"61 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploration of Whisper fine-tuning strategies for low-resource ASR","authors":"Yunpeng Liu, Xukui Yang, Dan Qu","doi":"10.1186/s13636-024-00349-3","DOIUrl":"https://doi.org/10.1186/s13636-024-00349-3","url":null,"abstract":"Limited data availability remains a significant challenge for Whisper’s low-resource speech recognition performance, falling short of practical application requirements. While previous studies have successfully reduced the recognition error rates of target language speech through fine-tuning, a comprehensive exploration and analysis of Whisper’s fine-tuning capabilities and the advantages and disadvantages of various fine-tuning strategies are still lacking. This paper aims to fill this gap by conducting comprehensive experimental exploration for Whisper’s low-resource speech recognition performance using five fine-tuning strategies with limited supervised data from seven low-resource languages. The results and analysis demonstrate that all fine-tuning strategies explored in this paper significantly enhance Whisper’s performance. However, different strategies vary in their suitability and practical effectiveness, highlighting the need for careful selection based on specific use cases and resources available.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"21 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing feature fusion for improved zero-shot adaptation in text-to-speech synthesis","authors":"Zhiyong Chen, Zhiqi Ai, Youxuan Ma, Xinnuo Li, Shugong Xu","doi":"10.1186/s13636-024-00351-9","DOIUrl":"https://doi.org/10.1186/s13636-024-00351-9","url":null,"abstract":"In the era of advanced text-to-speech (TTS) systems capable of generating high-fidelity, human-like speech by referring a reference speech, voice cloning (VC), or zero-shot TTS (ZS-TTS), stands out as an important subtask. A primary challenge in VC is maintaining speech quality and speaker similarity with limited reference data for a specific speaker. However, existing VC systems often rely on naive combinations of embedded speaker vectors for speaker control, which compromises the capture of speaking style, voice print, and semantic accuracy. To overcome this, we introduce the Two-branch Speaker Control Module (TSCM), a novel and highly adaptable voice cloning module designed to precisely processing speaker or style control for a target speaker. Our method uses an advanced fusion of local-level features from a Gated Convolutional Network (GCN) and utterance-level features from a gated recurrent unit (GRU) to enhance speaker control. We demonstrate the effectiveness of TSCM by integrating it into advanced TTS systems like FastSpeech 2 and VITS architectures, significantly optimizing their performance. Experimental results show that TSCM enables accurate voice cloning for a target speaker with minimal data through both zero-shot or few-shot fine-tuning of pretrained TTS models. Furthermore, our TSCM-based VITS (TSCM-VITS) showcases superior performance in zero-shot scenarios compared to existing state-of-the-art VC systems, even with basic dataset configurations. Our method’s superiority is validated through comprehensive subjective and objective evaluations. A demonstration of our system is available at https://great-research.github.io/tsct-tts-demo/ , providing practical insights into its application and effectiveness.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"48 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joanna Luberadzka, Hendrik Kayser, Jörg Lücke, Volker Hohmann
{"title":"Towards multidimensional attentive voice tracking—estimating voice state from auditory glimpses with regression neural networks and Monte Carlo sampling","authors":"Joanna Luberadzka, Hendrik Kayser, Jörg Lücke, Volker Hohmann","doi":"10.1186/s13636-024-00350-w","DOIUrl":"https://doi.org/10.1186/s13636-024-00350-w","url":null,"abstract":"Selective attention is a crucial ability of the auditory system. Computationally, following an auditory object can be illustrated as tracking its acoustic properties, e.g., pitch, timbre, or location in space. The difficulty is related to the fact that in a complex auditory scene, the information about the tracked object is not available in a clean form. The more cluttered the sound mixture, the more time and frequency regions where the object of interest is masked by other sound sources. How does the auditory system recognize and follow acoustic objects based on this fragmentary information? Numerous studies highlight the crucial role of top-down processing in this task. Having in mind both auditory modeling and signal processing applications, we investigated how computational methods with and without top-down processing deal with increasing sparsity of the auditory features in the task of estimating instantaneous voice states, defined as a combination of three parameters: fundamental frequency F0 and formant frequencies F1 and F2. We found that the benefit from top-down processing grows with increasing sparseness of the auditory data.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"33 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141153790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sampling the user controls in neural modeling of audio devices","authors":"Otto Mikkonen, Alec Wright, Vesa Välimäki","doi":"10.1186/s13636-024-00347-5","DOIUrl":"https://doi.org/10.1186/s13636-024-00347-5","url":null,"abstract":"This work studies neural modeling of nonlinear parametric audio circuits, focusing on how the diversity of settings of the target device user controls seen during training affects network generalization. To study the problem, a large corpus of training datasets is synthetically generated using SPICE simulations of two distinct devices, an analog equalizer and an analog distortion pedal. A proven recurrent neural network architecture is trained using each dataset. The difference in the datasets is in the sampling resolution of the device user controls and in their overall size. Based on objective and subjective evaluation of the trained models, a sampling resolution of five for the device parameters is found to be sufficient to capture the behavior of the target systems for the types of devices considered during the study. This result is desirable, since a dense sampling grid can be impractical to realize in the general case when no automated way of setting the device parameters is available, while collecting large amounts of data using a sparse grid only incurs small additional costs. Thus, the result provides guidance for efficient collection of training data for neural modeling of other similar audio devices.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"41 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}