Human CellPub Date : 2024-09-01Epub Date: 2024-06-20DOI: 10.1007/s13577-024-01094-7
Jianbing Liu, Kai Yang, Xiaoyu Lin, Jing Xu, Xiaohua Cui, Jianqing Hao, Wei Wang, Wenhao Wang, Li Li, Min Hao
{"title":"IL-32/NFκB/miR-205 loop sustains the high expression of IL-32 and enhances the motility of cervical cancer cells.","authors":"Jianbing Liu, Kai Yang, Xiaoyu Lin, Jing Xu, Xiaohua Cui, Jianqing Hao, Wei Wang, Wenhao Wang, Li Li, Min Hao","doi":"10.1007/s13577-024-01094-7","DOIUrl":"10.1007/s13577-024-01094-7","url":null,"abstract":"<p><p>Human papillomavirus (HPV) infection is a major contributor to cervical cancer. Persistent HPV infection can trigger the expression of IL-32, yet the precise role of IL-32 in the occurrence and development of cervical cancer remains elusive. To investigate this, qRT‒PCR and western blotting were utilized to measure the mRNA and protein expression levels; bioinformatics analysis was used to screen differentially expressed miRNAs; wound healing and transwell assays were conducted to evaluate cell migration and invasion capabilities. Comparative analysis revealed significantly elevated IL-32 expression in cervical cancer tissues and cell lines compared to control groups. In SiHa and/or HeLa, overexpression of IL-32 and IL-32 exposure markedly upregulated miR-205, whereas its knockdown resulted in a substantial downregulation of miR-205. Furthermore, miR-205 also could significantly regulate the expression of IL-32 in HeLa and SiHa cells. Upregulation and downregulation of IL-32 led to a significant increase or decrease in NFκB expression, respectively. Treatment with BAY11-7082 (an NFκB inhibitor) notably decreased miR-205 expression but had no effect on IL-32 levels. qRT‒PCR and western blotting analyses demonstrated that both overexpression and underexpression of IL-32 and miR-205 significantly enhanced or reduced MMP2 and MMP9 expression in cervical cancer cells, respectively. Knockdown of IL-32 significantly inhibited the migration and invasion of HeLa and SiHa; conversely, treatment with rIL-32α and rIL-32γ notably promoted their migration and invasion. In brief, IL-32 is highly expressed via the formation of a positive regulatory loop with NFκB/miR-205, contributing to the persistence of inflammation and promoting the progression of cervical cancer.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141433211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human CellPub Date : 2024-09-01Epub Date: 2024-08-05DOI: 10.1007/s13577-024-01115-5
Christian Schwerk, Horst Schroten
{"title":"In vitro models of the choroid plexus and the blood-cerebrospinal fluid barrier: advances, applications, and perspectives.","authors":"Christian Schwerk, Horst Schroten","doi":"10.1007/s13577-024-01115-5","DOIUrl":"10.1007/s13577-024-01115-5","url":null,"abstract":"<p><p>The choroid plexus (CP), a highly vascularized endothelial-epithelial convolute, is placed in the ventricular system of the brain and produces a large part of the cerebrospinal fluid (CSF). Additionally, the CP is the location of a blood-CSF barrier (BCSFB) that separates the CSF from the blood stream in the CP endothelium. In vitro models of the CP and the BCSFB are of high importance to investigate the biological functions of the CP and the BCSFB. Since the CP is involved in several serious diseases, these in vitro models promise help in researching the processes contributing to the diseases and during the development of treatment options. In this review, we provide an overview on the available models and the advances that have been made toward more sophisticated and \"in vivo near\" systems as organoids and microfluidic lab-on-a-chip approaches. We go into the applications and research objectives for which the various modeling systems can be used and discuss the possible future prospects and perspectives.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human CellPub Date : 2024-09-01Epub Date: 2024-07-31DOI: 10.1007/s13577-024-01112-8
Souhrid Sarkar, Somi Patranabis
{"title":"Immunomodulatory signalling networks in glioblastoma multiforme: a comprehensive review of therapeutic approaches.","authors":"Souhrid Sarkar, Somi Patranabis","doi":"10.1007/s13577-024-01112-8","DOIUrl":"10.1007/s13577-024-01112-8","url":null,"abstract":"<p><p>Glioblastoma multiforme is a very aggressive type of cancer with high mortality and poor prognosis worldwide. Advanced treatment options with an understanding of the molecules and signalling mechanisms involved in this type of cancer have the potential to increase targeted therapy and decrease off-target effects, resistance, and recurrence. Glioblastoma multiforme (GBM) presents a complex tumour microenvironment with numerous cellular components and an extracellular matrix comprising multiple components. A deeper understanding of these components and corresponding signalling pathways can increase the success of immune checkpoint inhibitors in the treatment of GBM. The discovery of specific molecular changes and biomarkers has led to the investigation of tailored treatments for individual patients. Combination therapies targeting multiple pathways or utilizing different modalities are emerging as a promising strategy albeit with challenges in drug delivery to the brain. The review presents a comprehensive update of the various immunomodulatory signalling networks in GBM and highlights the corresponding therapeutic approaches by targeting them.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synergistic effect of chimeric antigen receptor modified with Bcl-2 on enhanced solid tumour targeting.","authors":"Xiaoyan Wang, Guodong Liu, Tian Huan, Yuxing Wang, Bo Jiang, Wei Liu, Anran Dai, Xiangzhi Zhang, Feng Yu","doi":"10.1007/s13577-024-01088-5","DOIUrl":"10.1007/s13577-024-01088-5","url":null,"abstract":"<p><p>Engineered T cells expressing chimeric antigen receptors (CARs) have shown remarkable therapeutic effects on haematological malignancies. However, CART cells are less effective on solid tumours mainly due to their weak persistence, which might be caused by activation-induced cell death (AICD). To overcome this limitation, CART cell with the antigen, Epidermal growth factor receptor variant III (EGFRvIII), targeting was modified to carry the anti-apoptotic molecule B cell lymphoma 2 (Bcl-2), and the final construct was named as EGFRvIII·CART-Bcl2 cells. Compared with the EGFRvIII·CART cells, EGFRvIII·CART-Bcl2 cells revealed higher capacities of proliferation, anti-apoptosis and tumour cell killing in vitro. Moreover, EGFRvIII·CART-Bcl2 cells had a longer persistence rate and exerted better anti-tumour effects than EGFRvIII·CART cells in cervical carcinoma xenograft model. Taken together, our findings suggest that incorporating anti-apoptotic molecules into CART cells may enhance its therapeutic effects against solid tumours.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human CellPub Date : 2024-09-01Epub Date: 2024-07-16DOI: 10.1007/s13577-024-01100-y
Changpeng Chai, Huan Tang, Xin Miao, Yuanhui Su, Lu Li, Cheng Yu, Jianfeng Yi, Zhenzhen Ye, Long Miao, Bo Zhang, Zhengfeng Wang, Wei Luo, Jinjing Hu, Hui Zhang, Wence Zhou, Hao Xu
{"title":"Establishment and characterization of the PDAC-X3 cell line: a novel Chinese-origin pancreatic ductal adenocarcinoma cell line.","authors":"Changpeng Chai, Huan Tang, Xin Miao, Yuanhui Su, Lu Li, Cheng Yu, Jianfeng Yi, Zhenzhen Ye, Long Miao, Bo Zhang, Zhengfeng Wang, Wei Luo, Jinjing Hu, Hui Zhang, Wence Zhou, Hao Xu","doi":"10.1007/s13577-024-01100-y","DOIUrl":"10.1007/s13577-024-01100-y","url":null,"abstract":"<p><p>In this study, a novel pancreatic cancer cell line, termed pancreatic ductal adenocarcinoma (PDAC)-X3 cell line, was successfully derived from the primary tumor. Comprehensive analyses of its malignant phenotype, molecular properties, specific biomarkers, and histological features confirmed that PDAC-X3 cells serve as a valuable model for investigating the underlying mechanisms driving pancreatic carcinogenesis and advancing potential therapeutic strategies. The newly established cell line was continuously cultured for over 12 months and was stably passaged through more than 50 generations. Morphologically, PDAC-X3 cells displayed characteristics typical of epithelial tumors. The population doubling time for PDAC-X3 cells was determined to be 50 h. Karyotype analysis revealed that 75% of PDAC-X3 cells presented as hypotriploid, while 25% were sub-tetraploid, with representative karyotypes being 53 and XY der (1) inv (9) der (22). In suspension culture, PDAC-X3 cells efficiently formed organoids. Upon inoculation into BALB/C nude mice, these cells initiated the development of xenograft tumors, achieving a tumor formation rate of 33%. Morphologically, these xenografted tumors closely resembled the primary tumor. Drug sensitivity assays indicated that PDAC-X3 cells exhibited resistance to oxaliplatin but demonstrated sensitivity to 5-Fluorouracil (5-FU), gemcitabine, and paclitaxel. Immunohistochemical analysis revealed that CK7, CK19, E-cadherin, Vimentin, CA19-9 were positively expressed in PDAC-X3 cells. Meanwhile, the expression rate for Ki-67 was 30%, and that for CEA was not detected. Our findings underscore that PDAC-X3 represents a novel pancreatic cancer cell line, positioning it as a valuable model for basic research and the advancement of therapeutic strategies against pancreatic cancer.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141621303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human CellPub Date : 2024-09-01Epub Date: 2024-06-23DOI: 10.1007/s13577-024-01084-9
Daniele D'Arrigo, Manuela Salerno, Luca De Marziani, Angelo Boffa, Giuseppe Filardo
{"title":"A call for standardization for secretome and extracellular vesicles in osteoarthritis: results show disease-modifying potential, but protocols are too heterogeneous-a systematic review.","authors":"Daniele D'Arrigo, Manuela Salerno, Luca De Marziani, Angelo Boffa, Giuseppe Filardo","doi":"10.1007/s13577-024-01084-9","DOIUrl":"10.1007/s13577-024-01084-9","url":null,"abstract":"<p><p>The currently available osteoarthritis (OA) treatments offer symptoms' relief without disease-modifying effects. Increasing evidence supports the role of human mesenchymal stem cells (MSCs) to drive beneficial effects provided by their secretome and extracellular vesicles (EVs), which includes trophic and biologically active factors. Aim of this study was to evaluate the in vitro literature to understand the potential of human secretome and EVs for OA treatment and identify trends, gaps, and potential translational challenges. A systematic review was performed on PubMed, Embase, and Web-of-Science, identifying 58 studies. The effects of secretome and EVs were analysed on osteoarthritic cells regarding anabolic, anti-apoptotic/anti-inflammatory and catabolic/pro-inflammatory/degenerative activity, chondroinduction, and immunomodulation. The results showed that MSC-derived EVs elicit an increase in proliferation and migration, reduction of cell death and inflammation, downregulation of catabolic pathways, regulation of immunomodulation, and promotion of anabolic processes in arthritic cells. However, a high heterogeneity in several technical or more applicative aspects emerged. In conclusion, the use of human secretome and EVs as strategy to address OA processes has overall positive effects and disease-modifying potential. However, it is crucial to reduce protocol variability and strive toward a higher standardization, which will be essential for the translation of this promising OA treatment from the in vitro research setting to the clinical practice.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Establishment and characterization of TK-ALCL1: a novel NPM-ALK-positive anaplastic large-cell lymphoma cell line.","authors":"Prin Sungwan, Jutatip Panaampon, Ryusho Kariya, Satoshi Kamio, Rumi Nakagawa, Toru Hirozane, Yukiko Ogura, Makoto Abe, Kaoru Hirabayashi, Yukio Fujiwara, Kazutaka Kikuta, Seiji Okada","doi":"10.1007/s13577-024-01077-8","DOIUrl":"10.1007/s13577-024-01077-8","url":null,"abstract":"<p><p>TK-ALCL1, a novel anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphoma (ALK<sup>+</sup> ALCL) cell line, was established from the primary tumor site of a 59-year-old Japanese male patient. The immune profile of TK-ALCL1 corresponds to that seen typically in primary ALCL cells, i.e., positive for ALK, CD30, EMA, and CD4, but negative for CD2, CD3, CD5, CD8a, and EBV-related antigens. The rearrangement of the T cell receptor-gamma locus shows that TK-ALCL1 is clonally derived from T-lineage lymphoid cells. FISH and RT-PCR analysis revealed that TK-ALCL1 has the nucleophosmin (NPM)-ALK fusion transcript, which is typical for ALK<sup>+</sup> ALCL cell lines. When TK-ALCL1 was subcutaneously inoculated into 6-week-old BALB/c Rag2<sup>-/-</sup>/Jak3<sup>-/-</sup> (BRJ) mice, it formed tumor masses within 4-6 weeks. Morphological, immunohistochemical, and molecular genetic investigations confirmed that the xenograft and the original ALCL tumor were identical. The ALK inhibitors Alectinib and Lorlatinib suppressed proliferation in a dose-dependent manner. Thus, TK-ALCL1 provides a useful in vitro and in vivo model for investigation of the biology of ALK<sup>+</sup> ALCL and of novel therapeutic approaches targeting ALK.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"β-Sitosterol alleviates the malignant phenotype of hepatocellular carcinoma cells via inhibiting GSK3B expression.","authors":"Ruoyu Wang, Dan Tang, Longyun Ou, Jiacheng Jiang, Yu-Nan Wu, Xuefei Tian","doi":"10.1007/s13577-024-01081-y","DOIUrl":"10.1007/s13577-024-01081-y","url":null,"abstract":"<p><p>To explore the effects of β-Sitosterol upon hepatocellular carcinoma cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT), and to investigate the underlying mechanism using network pharmacology. Human hepatocellular carcinoma cell lines (Huh-7 and HCCLM3) were expose to gradient concentrations of β-Sitosterol (5 μg/mL, 10 μg/mL, and 20 μg/mL). Cell viability and proliferation were assessed using MTT, CCK-8, colony formation, and EdU assays.Flow cytometry was employed to evaluate cell cycle and apoptosis. Scratch and Transwell assays were performed, respectively, to detect cell migration and invasion. The levels of apoptosis-associated proteins (BAX, BCL2, and cleaved caspase3) as well as EMT-associated proteins (E-cadherin, N-cadherin, Snail, and Vimentin) were detected in Huh-7 and HCCLM3 cell lines using Western blot analysis. The drug target gene for β-Sitosterol was screened via PubChem and subsequently evaluated for expression in the GSE112790 dataset. In addition, the expression level of glycogen synthase kinase 3 beta (GSK3B) within the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) database was analyzed, along with its correlation to the survival outcomes of patients with hepatocellular carcinoma. The diagnostic efficiency of GSK3B was assessed by analyzing the ROC curve. Subsequently, Huh-7 and HCCLM3 cell lines were transfected with the overexpression vector of GSK3B and then treated with β-Sitosterol to further validate the association between GSK3B and β-Sitosterol. GSK3B demonstrated a significantly elevated expression in patients with hepatocellular carcinoma, which could predict hepatocellular carcinoma patients' impaired prognosis based on GEO dataset and TCGA database. GSK3B inhibitor (CHIR-98014) notably inhibited cell proliferation and invasion, promoted cell apoptosis and cell cycle arrest at G0/G1 phase in hepatocellular carcinoma cells. β-Sitosterol treatment further promoted the efffects of GSK3B inhibitor on hepatocellular carcinoma cells. GSK3B overexpression has been found to enhance the proliferative and invasive capabilities of hepatocellular carcinoma cells. Furthermore it has been observed that GSK3B overexpression, it has been obsear can partially reverse the inhibitory effect of β-Sitosterol upon hepatocellular. β-Sitosterol suppressed hepatocellular carcinoma cell proliferation and invasion, and enhanced apoptosis via inhibiting GSK3B expression.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transforming tumoroids derived from ALK-positive pulmonary adenocarcinoma to squamous cell carcinoma in vivo.","authors":"Etsuko Yokota, Miki Iwai, Yuta Ishida, Takuro Yukawa, Masaki Matsubara, Yoshio Naomoto, Hideyo Fujiwara, Yasumasa Monobe, Minoru Haisa, Nagio Takigawa, Takuya Fukazawa, Tomoki Yamatsuji","doi":"10.1007/s13577-024-01085-8","DOIUrl":"10.1007/s13577-024-01085-8","url":null,"abstract":"<p><p>Approximately 3-5% of non-small cell lung cancers (NSCLC) harbor ALK fusion genes and may be responsive to anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors. There are only a few reports on cell lines with EML4-ALK variant 3 (v3) and tumoroids that can be subject to long-term culture (> 3 months). In this study, we established tumoroids (PDT-LUAD#119) from a patient with lung cancer harboring EML4-ALK that could be cultured for 12 months. Whole-exome sequencing and RNA sequencing analyses revealed TP53 mutations and an EML4-ALK v3 mutation. PDT-LUAD#119 lung tumoroids were sensitive to the ALK tyrosine kinase inhibitors (ALK TKIs) crizotinib, alectinib, entrectinib, and lorlatinib, similar to NCI-H3122 cells harboring EML4-ALK variant 1 (v1). Unexpectedly, clear squamous cell carcinoma and solid adenocarcinoma were observed in xenografts from PDT-LUAD#119 lung tumoroids, indicating adenosquamous carcinoma. Immunostaining revealed that the squamous cell carcinoma was ALK positive, suggesting a squamous transformation of the adenocarcinoma. Besides providing a novel cancer model to support basic research on ALK-positive lung cancer, PDT-LUAD#119 lung tumoroids will help elucidate the pathogenesis of adenosquamous carcinoma.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human CellPub Date : 2024-07-01Epub Date: 2024-05-15DOI: 10.1007/s13577-024-01074-x
Yu Toyoda, Hirotaka Matsuo, Tappei Takada
{"title":"Functional characterization of variants in human ABCC11, an axillary osmidrosis risk factor.","authors":"Yu Toyoda, Hirotaka Matsuo, Tappei Takada","doi":"10.1007/s13577-024-01074-x","DOIUrl":"10.1007/s13577-024-01074-x","url":null,"abstract":"<p><p>Human ATP-binding cassette transporter C11 (ABCC11) is a membrane protein exhibiting ATP-dependent transport activity for a variety of lipophilic anions including endogenous substances and xenobiotics such as anti-cancer agents. Accumulating evidence indicates that ABCC11 wild type is responsible for the high-secretion phenotypes in human apocrine glands including wet type of earwax and the risk of axillary osmidrosis. Also, a less-functional variant of ABCC11 was reportedly associated with a risk for drug-induced toxicity in humans. Thus, functional change in ABCC11 may affect individual's constitution and drug toxicity, which led us to reason that functional validation of genetic variations in ABCC11 should be of importance. Therefore, in addition to p.G180R (a well-characterized non-functional variant of ABCC11), we studied cellular expression and function of 10 variants of ABCC11. In this study, ABCC11 function was evaluated as an ATP-dependent transport of radio labeled-dehydroepiandrosterone sulfate using ABCC11-expressing plasma membrane vesicles. Except for p.G180R, other 10 variants were maturated as an N-linked glycoprotein and expressed on the plasma membrane. We found that six variants impaired the net cellular function of ABCC11. Among them, p.R630W was most influential. Including this identification of a significantly-dysfunctional variant, our findings will extend our understanding of genetic variations and biochemical features of ABCC11 protein.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140946362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}