L. Liou, Yao-Fan Fang, P. Tsai, Yen-Fu Chen, Che-Tzu Chang, Chih-chieh Chen, W. Chiang
{"title":"Immunoregulatory Cells and Cytokines Discriminate Disease Activity Score 28-Remission Statuses and Ultrasound Grades in Rheumatoid Arthritis Patients with Non-High Disease Activity","authors":"L. Liou, Yao-Fan Fang, P. Tsai, Yen-Fu Chen, Che-Tzu Chang, Chih-chieh Chen, W. Chiang","doi":"10.3390/ijms25168694","DOIUrl":"https://doi.org/10.3390/ijms25168694","url":null,"abstract":"It is not clear whether immunoregulatory cytokines and cells are associated with Disease Activity Score 28 (DAS28) scores and ultrasound grades/scores. Here, we investigated the relationships between immunoregulatory cytokines or cells and different DAS28 scores or ultrasound grades/scores in patients with rheumatoid arthritis (RA). This study enrolled 50 RA patients (with 147 visits) who had remission/low/moderate DAS28-ESR scores (92% in remission and low disease activity) at baseline. Blood was collected and an ultrasound was performed three times in a year. Percentages of regulatory B cells and T regulatory type 1 cells and M2 macrophage numbers in the blood were examined. Plasma levels of 10 immunoregulatory cytokines IL-4, IL-5, IL-9, IL-10, IL-13, IL-27, IL-35, TGF-β1, sTNF-R1, and sTNF-R2 and monocyte chemotactic protein-1 (MCP-1) were assessed using ELISA assay. The correlations of cytokines and cells with different DAS28 scores and ultrasound grades were investigated, and cytokines and cells were compared between different categories of DAS28 scores and ultrasound grades. Plasma TGF-β1 levels were higher in the DAS28-ESR < 2.6 (remission) subgroup than in the DAS28-ESR ≥ 2.6 (nonremission) subgroup (p = 0.037). However, plasma TGF-β1 levels were higher in the high ultrasound grade subgroup than those in the low ultrasound grade subgroup (p = 0.007). The number of M2 macrophages was lower in the DAS28-MCP-1 < 2.2 subgroup than in the DAS28-MCP-1 ≥ 2.2 subgroup (p = 0.036). The levels of TGF-β1, sTNF-R2, IL-10, and IL-27 were higher in patients with high ultrasound grades than in those with low ultrasound grades. IL-27 was also higher in the nonremission DAS28-ESR subgroup than the remission one (p = 0.025). Moreover, sTNF-R1 levels in the 2011 American College of Rheumatology/European League Against Rheumatism (ACR/EULAR) remission subgroup were significantly lower than in the 2011 ACR/EULAR nonremission subgroup (p = 0.007). This trend was reflected in that lower sTNF-R1 levels correlated with low DAS28-MCP-1 scores (rho = 0.222, p = 0.007). We conclude that high plasma TGF-β1 levels indicate the DAS28-ESR remission (<2.6) subgroup and the high ultrasound grade subgroup. IL-27 probably connects the nonremission DAS28-ESR to high ultrasound grades. Low sTNF-R1 levels probably link low DAS28-MCP-1 scores with the 2011 ACR/EULAR remission subgroup. It suggests that incongruent immuno-inflammatory abnormalities exist between DAS28 scores and ultrasound grades, and are also dissimilar among various DAS28-formula categories. Therefore, this study may provide a basis for further research into individual cytokines and immunoregulatory cells behind each DAS28 formula and ultrasound grades/scores.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141924288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara Aghazadeh, Q. Peng, F. Dardmeh, Jesper Hjortdal, Vladimir Zachar, H. Alipour
{"title":"Immunophenotypical Characterization of Limbal Mesenchymal Stromal Cell Subsets during In Vitro Expansion","authors":"Sara Aghazadeh, Q. Peng, F. Dardmeh, Jesper Hjortdal, Vladimir Zachar, H. Alipour","doi":"10.3390/ijms25168684","DOIUrl":"https://doi.org/10.3390/ijms25168684","url":null,"abstract":"Limbal mesenchymal stromal cells (LMSCs) reside in the limbal niche, supporting corneal integrity and facilitating regeneration. While mesenchymal stem/stromal cells (MSCs) are used in regenerative therapies, there is limited knowledge about LMSC subpopulations and their characteristics. This study characterized human LMSC subpopulations through the flow cytometric assessment of fifteen cell surface markers, including MSC, wound healing, immune regulation, ASC, endothelial, and differentiation markers. Primary LMSCs were established from remnant human corneal transplant specimens and passaged eight times to observe changes during subculture. The results showed the consistent expression of typical MSC markers and distinct subpopulations with the passage-dependent expression of wound healing, immune regulation, and differentiation markers. High CD166 and CD248 expressions indicated a crucial role in ocular surface repair. CD29 expression suggested an immunoregulatory role. Comparable pigment-epithelial-derived factor (PEDF) expression supported anti-inflammatory and anti-angiogenic roles. Sustained CD201 expression indicated maintained differentiation capability, while VEGFR2 expression suggested potential endothelial differentiation. LMSCs showed higher VEGF expression than fibroblasts and endothelial cells, suggesting a potential contribution to ocular surface regeneration through the modulation of angiogenesis and inflammation. These findings highlight the heterogeneity and multipotent potential of LMSC subpopulations during in vitro expansion, informing the development of standardized protocols for regenerative therapies and improving treatments for ocular surface disorders.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141922744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Pennisi, P. Bruzzaniti, Benedetta Burattini, Giacomo Piaser Guerrato, G. D. Della Pepa, C. Sturiale, P. Lapolla, Pietro Familiari, Biagia La Pira, Giancarlo D’Andrea, Alessandro Olivi, Q. D’Alessandris, Nicola Montano
{"title":"Advancements in Telomerase-Targeted Therapies for Glioblastoma: A Systematic Review","authors":"Giovanni Pennisi, P. Bruzzaniti, Benedetta Burattini, Giacomo Piaser Guerrato, G. D. Della Pepa, C. Sturiale, P. Lapolla, Pietro Familiari, Biagia La Pira, Giancarlo D’Andrea, Alessandro Olivi, Q. D’Alessandris, Nicola Montano","doi":"10.3390/ijms25168700","DOIUrl":"https://doi.org/10.3390/ijms25168700","url":null,"abstract":"Glioblastoma (GBM) is a primary CNS tumor that is highly lethal in adults and has limited treatment options. Despite advancements in understanding the GBM biology, the standard treatment for GBM has remained unchanged for more than a decade. Only 6.8% of patients survive beyond five years. Telomerase, particularly the hTERT promoter mutations present in up to 80% of GBM cases, represents a promising therapeutic target due to its role in sustaining telomere length and cancer cell proliferation. This review examines the biology of telomerase in GBM and explores potential telomerase-targeted therapies. We conducted a systematic review following the PRISMA-P guidelines in the MEDLINE/PubMed and Scopus databases, from January 1995 to April 2024. We searched for suitable articles by utilizing the terms “GBM”, “high-grade gliomas”, “hTERT” and “telomerase”. We incorporated studies addressing telomerase-targeted therapies into GBM studies, excluding non-English articles, reviews, and meta-analyses. We evaluated a total of 777 records and 46 full texts, including 36 studies in the final review. Several compounds aimed at inhibiting hTERT transcription demonstrated promising preclinical outcomes; however, they were unsuccessful in clinical trials owing to intricate regulatory pathways and inadequate pharmacokinetics. Direct hTERT inhibitors encountered numerous obstacles, including a prolonged latency for telomere shortening and the activation of the alternative lengthening of telomeres (ALT). The G-quadruplex DNA stabilizers appeared to be potential indirect inhibitors, but further clinical studies are required. Imetelstat, the only telomerase inhibitor that has undergone clinical trials, has demonstrated efficacy in various cancers, but its efficacy in GBM has been limited. Telomerase-targeted therapies in GBM is challenging due to complex hTERT regulation and inadequate inhibitor pharmacokinetics. Our study demonstrates that, despite promising preclinical results, no Telomerase inhibitors have been approved for GBM, and clinical trials have been largely unsuccessful. Future strategies may include Telomerase-based vaccines and multi-target inhibitors, which may provide more effective treatments when combined with a better understanding of telomere dynamics and tumor biology. These treatments have the potential to be integrated with existing ones and to improve the outcomes for patients with GBM.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair?","authors":"F. Younesi, Boris Hinz","doi":"10.3390/ijms25168712","DOIUrl":"https://doi.org/10.3390/ijms25168712","url":null,"abstract":"Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring—called fibrosis—that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141924701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Lipowicz, A. Malińska, Michał Nowicki, A. Rawłuszko-Wieczorek
{"title":"Genes Co-Expressed with ESR2 Influence Clinical Outcomes in Cancer Patients: TCGA Data Analysis","authors":"J. Lipowicz, A. Malińska, Michał Nowicki, A. Rawłuszko-Wieczorek","doi":"10.3390/ijms25168707","DOIUrl":"https://doi.org/10.3390/ijms25168707","url":null,"abstract":"ERβ has been assigned a tumor suppressor role in many cancer types. However, as conflicting findings emerge, ERβ’s tissue-specific expression and functional role have remained elusive. There remains a notable gap in compact and comprehensive analyses of ESR2 mRNA expression levels across diverse tumor types coupled with an exploration of its potential gene network. In this study, we aim to address these gaps by presenting a comprehensive analysis of ESR2 transcriptomic data. We distinguished cancer types with significant changes in ESR2 expression levels compared to corresponding healthy tissue and concluded that ESR2 influences patient survival. Gene Set Enrichment Analysis (GSEA) distinguished molecular pathways affected by ESR2, including oxidative phosphorylation and epithelial–mesenchymal transition. Finally, we investigated genes displaying similar expression patterns as ESR2 in tumor tissues, identifying potential co-expressed genes that may exert a synergistic effect on clinical outcomes, with significant results, including the expression of ACIN1, SYNE2, TNFRSF13C, and MDM4. Collectively, our results highlight the significant influence of ESR2 mRNA expression on the transcriptomic landscape and the overall metabolism of cancerous cells across various tumor types.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siva Thirugnanam, Chenxiao Wang, Chen Zheng, Brooke F. Grasperge, Prasun K. Datta, Jay Rappaport, Xuebin Qin, N. Rout
{"title":"The Association between IL-1β and IL-18 Levels, Gut Barrier Disruption, and Monocyte Activation during Chronic Simian Immunodeficiency Virus Infection and Long-Term Suppressive Antiretroviral Therapy","authors":"Siva Thirugnanam, Chenxiao Wang, Chen Zheng, Brooke F. Grasperge, Prasun K. Datta, Jay Rappaport, Xuebin Qin, N. Rout","doi":"10.3390/ijms25168702","DOIUrl":"https://doi.org/10.3390/ijms25168702","url":null,"abstract":"HIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this persistent inflammatory state remain poorly understood. Here, utilizing the nonhuman primate model of Human Immunodeficiency Virus (HIV) infection with suppressive antiretroviral therapy (ART), we investigated activation of inflammasome pathways and their association with intestinal epithelial barrier disruption (IEBD). Longitudinal blood samples obtained from rhesus macaques with chronic SIV infection and long-term suppressive ART were evaluated for IEBD biomarkers, inflammasome activation (IL-1β and IL-18), inflammatory cytokines, and triglyceride (TG) levels. Activated monocyte subpopulations and glycolytic potential were investigated in peripheral blood mononuclear cells (PBMCs). During the chronic phase of treated SIV infection, elevated levels of plasma IL-1β and IL-18 were observed following the hallmark increase in IEBD biomarkers, intestinal fatty acid-binding protein (IFABP) and LPS-binding protein (LBP). Further, significant correlations of plasma IFABP levels with IL-1β and IL-18 were observed between 10 and 12 months of ART. Higher levels of sCD14, IL-6, and GM-CSF, among other inflammatory mediators, were also observed only during the long-term SIV + ART phase along with a trend of increase in the frequencies of activated CD14+CD16+ intermediate monocyte subpopulations. Lastly, we found elevated levels of blood TG and higher glycolytic capacity in PBMCs of chronic SIV-infected macaques with long-term ART. The increase in circulating IL-18 and IL-1β following IEBD and their significant positive correlation with IFABP suggest a connection between gut barrier disruption and inflammasome activation during chronic SIV infection, despite viral suppression with ART. Additionally, the increase in markers of monocyte activation, along with elevated TG and enhanced glycolytic pathway activity, indicates metabolic remodeling that could fuel metabolic syndrome. Further research is needed to understand the mechanisms by which gut dysfunction and inflammasome activation contribute to HIV-associated metabolic complications, enabling targeted interventions in people with HIV.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141922017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianxiang Zhang, Manman Li, Xiaoyue Zhu, Shuaixian Li, Meiyan Guo, Changhong Guo, Y. Shu
{"title":"Comparative Chloroplast Genomes Analysis Provided Adaptive Evolution Insights in Medicago ruthenica","authors":"Tianxiang Zhang, Manman Li, Xiaoyue Zhu, Shuaixian Li, Meiyan Guo, Changhong Guo, Y. Shu","doi":"10.3390/ijms25168689","DOIUrl":"https://doi.org/10.3390/ijms25168689","url":null,"abstract":"A perennial leguminous forage, Medicago ruthenica has outstanding tolerance to abiotic stresses. The genome of Medicago ruthenica is large and has a complex genetic background, making it challenging to accurately determine genetic information. However, the chloroplast genome is widely used for researching issues related to evolution, genetic diversity, and other studies. To better understand its chloroplast characteristics and adaptive evolution, chloroplast genomes of 61 Medicago ruthenica were assembled (including 16 cultivated Medicago ruthenica germplasm and 45 wild Medicago ruthenica germplasm). These were used to construct the pan-chloroplast genome of Medicago ruthenica, and the chloroplast genomes of cultivated and wild Medicago ruthenica were compared and analyzed. Phylogenetic and haplotype analyses revealed two main clades of 61 Medicago ruthenica germplasm chloroplast genomes, distributed in eastern and western regions. Meanwhile, based on chloroplast variation information, 61 Medicago ruthenica germplasm can be divided into three genetic groups. Unlike the phylogenetic tree constructed from the chloroplast genome, a new intermediate group has been identified, mainly consisting of samples from the eastern region of Inner Mongolia, Shanxi Province, and Hebei Province. Transcriptomic analysis showed that 29 genes were upregulated and three genes were downregulated. The analysis of these genes mainly focuses on enhancing plant resilience and adapting adversity by stabilizing the photosystem structure and promoting protein synthesis. Additionally, in the analysis of adaptive evolution, the accD, clpP and ycf1 genes showed higher average Ka/Ks ratios and exhibited significant nucleotide diversity, indicating that these genes are strongly positively selected. The editing efficiency of the ycf1 and clpP genes significantly increases under abiotic stress, which may positively contribute to plant adaptation to the environment. In conclusion, the construction and comparative analysis of the complete chloroplast genomes of 61 Medicago ruthenica germplasm from different regions not only revealed new insights into the genetic variation and phylogenetic relationships of Medicago ruthenica germplasm, but also highlighted the importance of chloroplast transcriptome analysis in elucidating the model of chloroplast responses to abiotic stress. These provide valuable information for further research on the adaptive evolution of Medicago ruthenica.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniela León, M. E. Reyes, Helga Weber, Álvaro Gutiérrez, Claudio Tapia, Ramón Silva, T. Viscarra, K. Buchegger, C. Ili, P. Brebi
{"title":"In Vitro Effect of Epigallocatechin Gallate on Heme Synthesis Pathway and Protoporphyrin IX Production","authors":"Daniela León, M. E. Reyes, Helga Weber, Álvaro Gutiérrez, Claudio Tapia, Ramón Silva, T. Viscarra, K. Buchegger, C. Ili, P. Brebi","doi":"10.3390/ijms25168683","DOIUrl":"https://doi.org/10.3390/ijms25168683","url":null,"abstract":"Photodynamic therapy (PDT) treats nonmelanoma skin cancer. PDT kills cells through reactive oxygen species (ROS), generated by interaction among cellular O2, photosensitizer and specific light. Protoporphyrin IX (PpIX) is a photosensitizer produced from methyl aminolevulinate (MAL) by heme group synthesis (HGS) pathway. In PDT-resistant cells, PDT efficacy has been improved by addition of epigallocatechin gallate (EGCG). Therefore, the aim of this work is to evaluate the effect of EGCG properties over MAL-TFD and PpIX production on A-431 cell line. EGCG’s role over cell proliferation (flow cytometry and wound healing assay) and clonogenic capability (clonogenic assay) was evaluated in A-431 cell line, while the effect of EGCG over MAL-PDT was determined by cell viability assay (MTT), PpIX and ROS detection (flow cytometry), intracellular iron quantification and gene expression of HGS enzymes (RT-qPCR). Low concentrations of EGCG (<50 µM) did not have an antiproliferative effect over A-431 cells; however, EGCG inhibited clonogenic cell capability. Furthermore, EGCG (<50 µM) improved MAL-PDT cytotoxicity, increasing PpIX and ROS levels, exerting a positive influence on PpIX synthesis, decreasing intracellular iron concentration and modifying HGS enzyme gene expression such as PGB (upregulated) and FECH (downregulated). EGCG inhibits clonogenic capability and modulates PpIX synthesis, enhancing PDT efficacy in resistant cells.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Aebisher, Paweł Woźnicki, Magdalena Czarnecka–Czapczyńska, Klaudia Dynarowicz, E. Szliszka, A. Kawczyk-Krupka, D. Bartusik-Aebisher
{"title":"Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma","authors":"David Aebisher, Paweł Woźnicki, Magdalena Czarnecka–Czapczyńska, Klaudia Dynarowicz, E. Szliszka, A. Kawczyk-Krupka, D. Bartusik-Aebisher","doi":"10.3390/ijms25168708","DOIUrl":"https://doi.org/10.3390/ijms25168708","url":null,"abstract":"Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound—a photosensitizer (PS)—which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141922826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingming Lei, Yaxin Li, Jiaying Li, Jie Liu, Zichun Dai, Rong Chen, Huanxi Zhu
{"title":"Low Testosterone and High Leptin Activate PPAR Signaling to Induce Adipogenesis and Promote Fat Deposition in Caponized Ganders","authors":"Mingming Lei, Yaxin Li, Jiaying Li, Jie Liu, Zichun Dai, Rong Chen, Huanxi Zhu","doi":"10.3390/ijms25168686","DOIUrl":"https://doi.org/10.3390/ijms25168686","url":null,"abstract":"Low or insufficient testosterone levels caused by caponization promote fat deposition in animals. However, the molecular mechanism of fat deposition in caponized animals remains unclear. This study aimed to investigate the metabolomics and transcriptomic profiles of adipose tissues and study the effect of testosterone and leptin on the proliferation of adipocytes. We observed a significant enlargement in the areas of adipocytes in the abdominal fat tissues in capon, as well as increased luciferase activity of the serum leptin and a sharp decrease in the serum testosterone in caponized gander. Metabolomics and transcriptomic results revealed differentially expressed genes and differentially expressed metabolites with enhanced PARR signal pathway. The mRNA levels of peroxisome proliferators-activated receptor γ, fatty acid synthase, and suppressor of cytokine signaling 3 in goose primary pre-adipocytes were significantly upregulated with high leptin treatment and decreased significantly with increasing testosterone dose. Hence, reduced testosterone and increased leptin levels after caponization possibly promoted adipocytes proliferation and abdominal fat deposition by altering the expression of PPAR pathway related genes in caponized ganders. This study provides a new direction for the mechanism through which testosterone regulates the biological function of leptin and fat deposition in male animals.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141924414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}