{"title":"Personalized Medicine in Severe Asthma: From Biomarkers to Biologics","authors":"Chun-Yu Chen, Kang-Hsi Wu, Bei Guo, Wen-Ya Lin, Yu-Jun Chang, Chih-Wei Wei, Mao-Jen Lin, Han-Ping Wu","doi":"10.3390/ijms25010182","DOIUrl":null,"url":null,"abstract":"Severe asthma is a complex and heterogeneous clinical condition presented as chronic inflammation of the airways. Conventional treatments are mainly focused on symptom control; however, there has been a shift towards personalized medicine. Identification of different phenotypes driven by complex pathobiological mechanisms (endotypes), especially those driven by type-2 (T2) inflammation, has led to improved treatment outcomes. Combining biomarkers with T2-targeting monoclonal antibodies is crucial for developing personalized treatment strategies. Several biological agents, including anti-immunoglobulin E, anti-interleukin-5, and anti-thymic stromal lymphopoietin/interleukin-4, have been approved for the treatment of severe asthma. These biological therapies have demonstrated efficacy in reducing asthma exacerbations, lowering eosinophil count, improving lung function, diminishing oral corticosteroid use, and improving the quality of life in selected patients. Severe asthma management is undergoing a profound transformation with the introduction of ongoing and future biological therapies. The availability of novel treatment options has facilitated the adoption of phenotype/endotype-specific approaches and disappearance of generic interventions. The transition towards precision medicine plays a crucial role in meticulously addressing the individual traits of asthma pathobiology. An era of tailored strategies has emerged, allowing for the successful targeting of immune-inflammatory responses that underlie uncontrolled T2-high asthma. These personalized approaches hold great promise for improving the overall efficacy and outcomes in the management of severe asthma. This article comprehensively reviews currently available biological agents and biomarkers for treating severe asthma. With the expanding repertoire of therapeutic options, it is becoming increasingly crucial to comprehend the influencing factors, understand the pathogenesis, and track treatment progress in severe asthma.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":"15 8","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25010182","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Severe asthma is a complex and heterogeneous clinical condition presented as chronic inflammation of the airways. Conventional treatments are mainly focused on symptom control; however, there has been a shift towards personalized medicine. Identification of different phenotypes driven by complex pathobiological mechanisms (endotypes), especially those driven by type-2 (T2) inflammation, has led to improved treatment outcomes. Combining biomarkers with T2-targeting monoclonal antibodies is crucial for developing personalized treatment strategies. Several biological agents, including anti-immunoglobulin E, anti-interleukin-5, and anti-thymic stromal lymphopoietin/interleukin-4, have been approved for the treatment of severe asthma. These biological therapies have demonstrated efficacy in reducing asthma exacerbations, lowering eosinophil count, improving lung function, diminishing oral corticosteroid use, and improving the quality of life in selected patients. Severe asthma management is undergoing a profound transformation with the introduction of ongoing and future biological therapies. The availability of novel treatment options has facilitated the adoption of phenotype/endotype-specific approaches and disappearance of generic interventions. The transition towards precision medicine plays a crucial role in meticulously addressing the individual traits of asthma pathobiology. An era of tailored strategies has emerged, allowing for the successful targeting of immune-inflammatory responses that underlie uncontrolled T2-high asthma. These personalized approaches hold great promise for improving the overall efficacy and outcomes in the management of severe asthma. This article comprehensively reviews currently available biological agents and biomarkers for treating severe asthma. With the expanding repertoire of therapeutic options, it is becoming increasingly crucial to comprehend the influencing factors, understand the pathogenesis, and track treatment progress in severe asthma.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).