Journal of Building Performance Simulation最新文献

筛选
英文 中文
Using Fourier series to obtain cross periodic wall response factors 利用傅里叶级数获取跨周期墙面响应因子
IF 2.5 4区 工程技术
Journal of Building Performance Simulation Pub Date : 2023-11-22 DOI: 10.1080/19401493.2023.2283755
Fernando Varela, Eduardo Theirs, Cristina González-Gaya, Susana Sánchez-Orgaz
{"title":"Using Fourier series to obtain cross periodic wall response factors","authors":"Fernando Varela, Eduardo Theirs, Cristina González-Gaya, Susana Sánchez-Orgaz","doi":"10.1080/19401493.2023.2283755","DOIUrl":"https://doi.org/10.1080/19401493.2023.2283755","url":null,"abstract":"","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139246952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limitations and issues of conventional artificial neural network-based surrogate models for building energy retrofit 基于人工神经网络的传统建筑节能改造代用模型的局限性和问题
IF 2.5 4区 工程技术
Journal of Building Performance Simulation Pub Date : 2023-11-17 DOI: 10.1080/19401493.2023.2282078
Chul-Hong Park, Cheol Soo Park
{"title":"Limitations and issues of conventional artificial neural network-based surrogate models for building energy retrofit","authors":"Chul-Hong Park, Cheol Soo Park","doi":"10.1080/19401493.2023.2282078","DOIUrl":"https://doi.org/10.1080/19401493.2023.2282078","url":null,"abstract":"","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139266159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An empirical review of methods to assess overheating in buildings in the context of changes to extreme heat events 在极端热事件变化的背景下评估建筑物过热的方法的经验审查
4区 工程技术
Journal of Building Performance Simulation Pub Date : 2023-11-07 DOI: 10.1080/19401493.2023.2276711
Rebecca Cole, Ralph Evins, Matt Eames
{"title":"An empirical review of methods to assess overheating in buildings in the context of changes to extreme heat events","authors":"Rebecca Cole, Ralph Evins, Matt Eames","doi":"10.1080/19401493.2023.2276711","DOIUrl":"https://doi.org/10.1080/19401493.2023.2276711","url":null,"abstract":"AbstractUnder climate change, extreme heat events are projected to become more frequent and intense. With people spending approximately 90% for their time indoors and buildings having long lifetimes, it is important that the built environment is resilient to these changes. Current methods to assess building performance in a future climate typically use morphed weather files and annual metrics. We compare 30 metrics and 2 weather data sources to assess and improve the representation of extreme heat events in building simulation. We show that morphing an extreme observed year may not necessarily result in an equally extreme year under the future climate and that current annual metrics do not correlate well with heatwave severity. We suggest that weather data from climate models is more robust in representing future weather for the UK and explore the recent UKCP18 data. We propose novel metrics which are able to capture heatwave severity inside buildings.KEYWORDS: Climate changeoverheatingmetricsweather files Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementDate sharing is not applicable to this study as no new data were created or analysed in this study.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135475316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupling BIM and detailed modelica simulations of HVAC systems in a common data environment 在公共数据环境中耦合BIM和HVAC系统的详细模型模拟
4区 工程技术
Journal of Building Performance Simulation Pub Date : 2023-10-30 DOI: 10.1080/19401493.2023.2271441
Esben Visby Fjerbæk, Mikki Seidenschnur, Ali Kücükavci, Kevin Michael Smith, Christian Anker Hviid
{"title":"Coupling BIM and detailed modelica simulations of HVAC systems in a common data environment","authors":"Esben Visby Fjerbæk, Mikki Seidenschnur, Ali Kücükavci, Kevin Michael Smith, Christian Anker Hviid","doi":"10.1080/19401493.2023.2271441","DOIUrl":"https://doi.org/10.1080/19401493.2023.2271441","url":null,"abstract":"","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rooftop unit comparison calculator: a framework for comparing performance of rooftop units with building energy simulation 屋顶单元比较计算器:用于比较屋顶单元性能与建筑能源模拟的框架
4区 工程技术
Journal of Building Performance Simulation Pub Date : 2023-10-19 DOI: 10.1080/19401493.2023.2269885
Sen Huang, Nick Fernandez, Srinivas Katipamula, Alekzander Parsons, Amelia Bleeker
{"title":"Rooftop unit comparison calculator: a framework for comparing performance of rooftop units with building energy simulation","authors":"Sen Huang, Nick Fernandez, Srinivas Katipamula, Alekzander Parsons, Amelia Bleeker","doi":"10.1080/19401493.2023.2269885","DOIUrl":"https://doi.org/10.1080/19401493.2023.2269885","url":null,"abstract":"AbstractThe applications of building energy simulation (BES) in designing heating, ventilation, and air conditioning (HVAC) systems are limited by the high costs of developing simulation models and the lack of references for determining the model parameters. This paper presents a software framework for selecting designs for rooftop unit HVAC (RTU) systems with BES. Specifically, this framework reduces the cost of using BES by automating the generation of EnergyPlus models. It also employs a systematic method for determining model parameters based on well-accepted datasets. We applied this framework in a comprehensive assessment of an advanced design of RTU systems in which 478 EnergyPlus models were developed without human involvement. The assessment reveals that replacing a constant-speed fan/coil with a multiple-speed fan/coil may not guarantee better overall performance. It also suggests the benefits of replacing furnace coils with heat pumps are subject to utility cost, weather conditions, and heating load profiles.KEYWORDS: Building energy simulationEnergyPlusHVAC system designModel parametersRooftop unitSimulation workflow Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementDerived data supporting the findings of this study are available from the corresponding author on request.Notes1 This work was supported by the US DOE Office of Energy Efficiency and Renewable Energy, Building Technologies Office. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/doe-public-access-plan).2 https://rtucc.pnnl.gov/#/","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135780154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spawn: coupling Modelica Buildings Library and EnergyPlus to enable new energy system and control applications 衍生:耦合Modelica建筑图书馆和EnergyPlus,使新的能源系统和控制应用
4区 工程技术
Journal of Building Performance Simulation Pub Date : 2023-10-11 DOI: 10.1080/19401493.2023.2266414
Michael Wetter, Kyle Benne, Hubertus Tummescheit, Christian Winther
{"title":"Spawn: coupling Modelica Buildings Library and EnergyPlus to enable new energy system and control applications","authors":"Michael Wetter, Kyle Benne, Hubertus Tummescheit, Christian Winther","doi":"10.1080/19401493.2023.2266414","DOIUrl":"https://doi.org/10.1080/19401493.2023.2266414","url":null,"abstract":"Spawn is DOE's next-generation tool chain for whole building energy control simulation. Spawn couples traditional imperative load-based envelope modelling with new equation-based modelling of HVAC and controls. Spawn uses EnergyPlus for the former and the Modelica Buildings Library for the latter. Because it leverages the Modelica Buildings Library, Spawn can evaluate advanced energy systems at the building and district scale, including new architectures and controls for heat pump systems with storage, and the coupling of such systems to electrical distribution networks. Spawn's Modelica integration likewise enables it to simulate realistic control sequences and therefore to bridge energy simulation and control implementation workflows. From EnergyPlus, Spawn inherits efficient envelope simulation and the ability to use existing envelope model authoring tools. This paper describes the architecture and implementation of Spawn, which automatically couples Modelica and EnergyPlus for run-time data exchange. This paper closes with examples that illustrate Spawn's modelling and simulation processes.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136210236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated urban heat sinks for low-carbon neighbourhoods: dissipating heat to the ground and sky through building structures 低碳社区的综合城市散热器:通过建筑结构将热量散发到地面和天空
4区 工程技术
Journal of Building Performance Simulation Pub Date : 2023-10-06 DOI: 10.1080/19401493.2023.2265335
Eduardo Gascón Alvarez, Kiley Feickert, Mohamed A. Ismail, Caitlin T. Mueller, Leslie K. Norford
{"title":"Integrated urban heat sinks for low-carbon neighbourhoods: dissipating heat to the ground and sky through building structures","authors":"Eduardo Gascón Alvarez, Kiley Feickert, Mohamed A. Ismail, Caitlin T. Mueller, Leslie K. Norford","doi":"10.1080/19401493.2023.2265335","DOIUrl":"https://doi.org/10.1080/19401493.2023.2265335","url":null,"abstract":"In a global context of simultaneous urbanization and rising ambient temperatures, it is imperative to design heat-resilient and material-efficient neighbourhoods that respond to the pressing demand for housing with minimal environmental impact. With this goal in mind, the work presented here focuses on the integration of heat dissipation systems within structural building components, introducing a novel framework for their systems-level simulation and design. Two well-studied, low-cost systems (shallow geothermal and night-sky cooling) are modelled within a parametric design workflow that combines bottom-up structural embodied carbon calculations with annual building energy simulations that account for heat sink availability. The proposed method results in a fast and reliable early-stage design tool that allows urban planners, policymakers, and designers to evaluate the suitability of available heat dissipation technologies across climates and urban morphologies. This paper analyzes specifically the multi-domain performance of a hypothetical urban geometry within three different cooling-dominated locations (Algiers, Cairo, and Bangkok).","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135350949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing a statistical electric vehicle charging model and its application in the performance assessment of a sustainable urban charging hub 建立电动汽车充电统计模型及其在可持续城市充电枢纽性能评价中的应用
4区 工程技术
Journal of Building Performance Simulation Pub Date : 2023-09-22 DOI: 10.1080/19401493.2023.2258843
N. J. Kelly, G. H. Flett, J. W. Hand
{"title":"Developing a statistical electric vehicle charging model and its application in the performance assessment of a sustainable urban charging hub","authors":"N. J. Kelly, G. H. Flett, J. W. Hand","doi":"10.1080/19401493.2023.2258843","DOIUrl":"https://doi.org/10.1080/19401493.2023.2258843","url":null,"abstract":"A statistical model to calculate dynamic, electric vehicle (EV) charging loads at public hubs, which can be used with building simulation tools is presented; it was generated using two, real datasets and shown to faithfully recreate the characteristics of charging seen in the monitored data. The model was used with a building simulation tool to assess the ability of rooftop PV with battery buffering to mitigate the effects of urban EV charging for a charging hub and car park in Glasgow, Scotland. The car park’s 200 kW PV array could fully-offset the demand of a fleet of approximately 50 vehicles. The addition of a small buffering battery (<100 kWh) significantly increased utilization of renewable energy, and reduced grid energy exchanges, but did little to mitigate peak demands.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136060808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Risk of incorrect choices due to uncertainty in BPS evaluations of conceptual-stage neighbourhood-scale building designs 概念阶段社区规模建筑设计的BPS评估的不确定性导致不正确选择的风险
4区 工程技术
Journal of Building Performance Simulation Pub Date : 2023-09-19 DOI: 10.1080/19401493.2023.2253458
Minu Agarwal, Luisa Pastore, Marilyne Andersen
{"title":"Risk of incorrect choices due to uncertainty in BPS evaluations of conceptual-stage neighbourhood-scale building designs","authors":"Minu Agarwal, Luisa Pastore, Marilyne Andersen","doi":"10.1080/19401493.2023.2253458","DOIUrl":"https://doi.org/10.1080/19401493.2023.2253458","url":null,"abstract":"At the conceptual-stage, building performance simulation (BPS) based evaluations are being increasingly used for tasks such as ranking of competing massing design proposals. However, such conceptual stage evaluations suffer from information deficiency in building level design attributes. The resulting uncertainty in performance evaluations raises questions regarding their usefulness for decision-making. We used a risk-based decision evaluation metric called expected opportunity loss to assess the reliability of a BPS-based ranking of conceptual stage massing schemes. We found daylighting assessments (spatial Daylight Autonomy) to be least reliable, with 22% chance of making an incorrect decision at the conceptual stage, followed by annual heating (15%) and cooling demand (8%). This work provides a structured framework for evaluating utility of conceptual stage BPS models and a purposeful basis for integration of BPS assessments in the design process, subject to level of design development.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135014892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulating annual autoregulation of daylight by grating smart window with angular-selective transmission 采用角度选择光栅智能窗模拟日光的年自动调节
4区 工程技术
Journal of Building Performance Simulation Pub Date : 2023-09-12 DOI: 10.1080/19401493.2023.2256690
Rustam S. Zakirullin, Irina A. Odenbakh
{"title":"Simulating annual autoregulation of daylight by grating smart window with angular-selective transmission","authors":"Rustam S. Zakirullin, Irina A. Odenbakh","doi":"10.1080/19401493.2023.2256690","DOIUrl":"https://doi.org/10.1080/19401493.2023.2256690","url":null,"abstract":"","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135878567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信