{"title":"Visible light photo catalytic and optical property evolution of combustion method prepared copper doped nickel ferrite nanoparticles","authors":"R. Jothiramalingam, H. Al-Lohedan, A. Karami","doi":"10.15251/jor.2023.195.525","DOIUrl":"https://doi.org/10.15251/jor.2023.195.525","url":null,"abstract":"By using a simple microwave combustion technique, copper-doped NiFe2O4 spinel nanoparticles were formed. The XRD patterns demonstrated that Cu doping into NiFe2O4 spinel resulted in the creation of α-Fe2O3 secondary phase in addition to the cubic structure that already existed. Using SEM, morphological investigations revealed irregular shapes and severely agglomerated different grain boundaries. In an optical analysis, it was discovered that the band gap narrowed as the Cu2+ doping percentage raised. The octahedral site (Ni-O) and tetrahedral site (Fe-O) stretching modes of the Cu-doped nanoparticle structure were linked to bands at 548, 514, and 649cm-1 from FT-IR analysis. Cu-doped nanoparticles were examined for their enhanced photocatalytic degradation of RhB in visible light irradiation under atmosphere condition. The performance of pure NiFe2O4 as a photocatalyst was discovered to be greatly impacted by the Cu-doping. Additionally, the photo-catalytic effect was optimized (efficiency rose from 88.26 percent, x = 0-99.85 percent, x = 0.4) with the rise of Cu-doping into x=0.4. An in-depth discussion was had on the potential photocatalytic mechanism. The simultaneous improvement of photocatalytic activities serves as proof that Cu-doped NiFe2O4 spinel nanoparticles will perform well in multifunctional photochromic devices in future.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":"157 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136375204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Studying the effect partial Ni2O3 nano-particles compensation on the properties of the compound Bi2Sr2-xYxCa2Cu3-yNiyO10+δ superconductors","authors":"N. A. Ahmad, A. D. Ali, S. H. Mahdi","doi":"10.15251/jor.2023.194.463","DOIUrl":"https://doi.org/10.15251/jor.2023.194.463","url":null,"abstract":"Partial compensation Ni2O3 nanoparticles have been considered in relation to their effects on the structure, electric, morphology, and composition of Bi-2223. X-ray diffraction was used to quantify structural characteristics, and the results showed that all of the crystals in the samples are orthorhombic, with the ratio at which the Bi-2223 phase develops increasing The constancy of the lattice along the c-axis was observed. The trend that has been observed suggests that there is a direct proportionality between the concentration of Ni2O3 and the magnitude of the increase. Suggestive of a high-temperature superconductor (Bi2Sr2-xYxCa2Cu3-yNiyO10+δ) composition, where y=0=0.03=0.12 Thanks to 3D AFM, the morphology of the surface has been thoroughly studied. The test specimens showed good crystalline structure and a smooth, uniform surface. We measured Tc with 4 separate probes. The maximum temperature constant (Tc) was measured to be 143 K at y=0.12.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136375220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Anithadevi, J. Kalpana, D. Shanthi, C. Ravichandran
{"title":"The size dependence and defect induced room temperature ferromagnetism of ZnO and Zn 1-x-y AlxZyO (Z=Mg/Ni) nanocomposites","authors":"R. Anithadevi, J. Kalpana, D. Shanthi, C. Ravichandran","doi":"10.15251/jor.2023.195.493","DOIUrl":"https://doi.org/10.15251/jor.2023.195.493","url":null,"abstract":"In the current research, Al-Mg-ZnO and Al-Ni-ZnO nanocomposites were synthesized by using simple soft chemical route. Prepared nanocomposites of Al-Mg-ZnO and Al-Ni-ZnO with capsule shape distributed magnetite nanostructured were carried out under the calcinated at 120 C for 12 h in furnace. The structural morphology and characterization analysis of as prepared nanocomposites was analyzed by XRD, UV–vis. FTIR, PL, TEM, VSM studies. XRD analysis confirmed the highly pure crystallized cubic phases. The XRD peaks show that the crystalline sizes are of the order of 22 nm, 19 nm, and 11nm. Magnetic property of the prepared nanocomposites was discussed in room temperature using VSM measurement. In spite of a number of researchers reporting the effect of codoping ZnO nanoparticles (NPs) with two different metals was modify the properties of the entire system such as enrich in room-temperature ferromagnetism. In this research we tried to by experimentally observed the magnetic properties of a series of soft chemical synthesized Zn1-x-yAlxZyO (Z=Mg/Ni) nanocomposites. Interestingly, it was found that in comparison to un-doped ZnO NPs and co-doped with two different metals. The ferromagnetic signal changes in a co-doped system in which one of the Mg/Ni ions increases the concentration of defects mechanism when Mg/Ni ions exhibited only one oxidation state. The potential role of charge transfer ferromagnetism is involving Mg2+ and Ni2+ ions substituted into ZnO lattice, The origin of magnetism in the nanocomposites is due to exchange interaction between local spin polarized electrons and the conduction electrons. The potential role of charge transfer ferromagnetism involving mixed valence ions and effects defect mechanism was used to explain the room temperature ferromagnetism.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136375211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of C ion irradiation on AlGaAs/InGaAs HEMT","authors":"H. L. Wang, S. X. Sun, H. Y. Mei, Y. T. Gao","doi":"10.15251/jor.2023.195.483","DOIUrl":"https://doi.org/10.15251/jor.2023.195.483","url":null,"abstract":"In this paper, the damage caused by C ion irradiation on AlGaAs/InGaAs HEMT was investigated. The projection ranges of C ions with varying energies in AlGaAs and InGaAs materials were calculated using Monte Carlo simulation. Additionally, simulations were conducted to study the radiation-induced damage caused by 50 keV, 70 keV, and 100 keV C ions incident on the basic structure of the AlGaAs/InGaAs heterojunction.The results showed that when using 70 keV energy for C ions, a higher number of vacancy defects were generated. Based on these findings, the influence of defects introduced by different irradiation doses of 70 keV C ions on the DC and RF characteristics of the device was analyzed.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136375404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the impact of Bi2O3 addition on the thermal properties and crystallization behavior of lead borosilicate glasses","authors":"Yu. S. Hordieiev, A. V. Zaichuk","doi":"10.15251/jor.2023.194.471","DOIUrl":"https://doi.org/10.15251/jor.2023.194.471","url":null,"abstract":"Novel heavy-metal oxide glasses with different compositions, specifically (80-x)PbO– xBi2O3–10B2O3–10SiO2, where x ranges from 0 to 60 mol%, were synthesized using a conventional melt-quenching technique. The amorphous nature of these glasses was confirmed through X-ray diffraction analysis. Additionally, infrared spectra were obtained for the prepared samples to explore their structural characteristics. Differential thermal analysis was performed to investigate the characteristic temperatures of the glasses, including the glass transition temperature, melting temperature, onset crystallization temperature, and peak crystallization temperature. The addition of Bi2O3 shifts the characteristic temperatures to higher values and affects the crystallization process and phases formed. Parameters like ΔT, KH, and KSP are used to evaluate and quantify glass stability. Dilatometric measurements demonstrated that substituting PbO with Bi2O3 in the glass composition resulted in an increase in glass transition temperature and dilatometric softening temperature, as well as a decrease in the coefficient of thermal expansion. Furthermore, we determined the density and calculated the molar volume of the samples. These findings deepen our understanding of the thermal behavior, glass stability, and structure-property relationships in lead borosilicate glasses with Bi2O3, facilitating the development and customization of glass compositions with desired thermal and physical characteristics for specific applications.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":"161 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136375219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of zinc oxide nano particles synthesized via chemical and green method","authors":"S. N. Begum, R. Kumuthini","doi":"10.15251/jor.2023.195.505","DOIUrl":"https://doi.org/10.15251/jor.2023.195.505","url":null,"abstract":"In recent years, the development of efficient green chemistry methods for synthesis of metal oxide nanoparticles has become a major focus of researchers. They have investigated in order to find an eco friendly technique for production of metal oxide nanoparticles. In this work our aim to synthesize of zinc oxide nano particles via chemical and green method. The zinc oxide nano particles were synthesized by mixing zinc sulphate (ZnSO4) solanum procumbens extract and KOH. The synthesized zinc oxide nanoparticles were characterized by XRD, FT-IR and UV-vis spectroscopy and Photoluminescence studies. Further, the synthesized zinc oxide nano particles were tested for antibacterial activity by stand art disc diffusion method.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136375209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. M. Hameed, S. A. Aldaghfag, M. Saeed, M. Yaseen, S Saleem, None Nasarullah
{"title":"Investigation on the physical properties of Ni doped SrTiO3 by first-principle calculations","authors":"M. M. Hameed, S. A. Aldaghfag, M. Saeed, M. Yaseen, S Saleem, None Nasarullah","doi":"10.15251/jor.2023.195.513","DOIUrl":"https://doi.org/10.15251/jor.2023.195.513","url":null,"abstract":"In present work, the magneto-electronic and optical features of Sr1-xNixTiO3 (x = 12.5%, 25%, 50% and 75%) compounds are calculated using full potential linearized augmented plane wave (FP-LAPW) scheme within density functional theory (DFT) as employed in WIEN2k software. The electronic band structures (BS) and density of states (DOS) interpret the induced half metallic ferromagnetism mainly originating from highly spin polarized Ni-d states. The computed value of total magnetic moment of Sr1-xNixTiO3 is 1.99998, 1.99991, 2.00003 and 2.00005 µB at 12.5%, 25%, 50% and 75% concentration respectively, which emerge primarily due to Ni-3d electrons. Furthermore, the optical features (refraction, dielectric function, absorption, and reflectivity) have also been computed within energy range of 0-10 eV. Sr1-xNixTiO3 is optically active in visible to ultraviolet (UV) region owing to low reflectivity and high absorption. Results portray that the studied compound is a potential contender for its usage in the development of spintronic and optoelectronic devices.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136375207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}