M. M. Hameed, S. A. Aldaghfag, M. Saeed, M. Yaseen, S Saleem, None Nasarullah
{"title":"Investigation on the physical properties of Ni doped SrTiO3 by first-principle calculations","authors":"M. M. Hameed, S. A. Aldaghfag, M. Saeed, M. Yaseen, S Saleem, None Nasarullah","doi":"10.15251/jor.2023.195.513","DOIUrl":null,"url":null,"abstract":"In present work, the magneto-electronic and optical features of Sr1-xNixTiO3 (x = 12.5%, 25%, 50% and 75%) compounds are calculated using full potential linearized augmented plane wave (FP-LAPW) scheme within density functional theory (DFT) as employed in WIEN2k software. The electronic band structures (BS) and density of states (DOS) interpret the induced half metallic ferromagnetism mainly originating from highly spin polarized Ni-d states. The computed value of total magnetic moment of Sr1-xNixTiO3 is 1.99998, 1.99991, 2.00003 and 2.00005 µB at 12.5%, 25%, 50% and 75% concentration respectively, which emerge primarily due to Ni-3d electrons. Furthermore, the optical features (refraction, dielectric function, absorption, and reflectivity) have also been computed within energy range of 0-10 eV. Sr1-xNixTiO3 is optically active in visible to ultraviolet (UV) region owing to low reflectivity and high absorption. Results portray that the studied compound is a potential contender for its usage in the development of spintronic and optoelectronic devices.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jor.2023.195.513","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In present work, the magneto-electronic and optical features of Sr1-xNixTiO3 (x = 12.5%, 25%, 50% and 75%) compounds are calculated using full potential linearized augmented plane wave (FP-LAPW) scheme within density functional theory (DFT) as employed in WIEN2k software. The electronic band structures (BS) and density of states (DOS) interpret the induced half metallic ferromagnetism mainly originating from highly spin polarized Ni-d states. The computed value of total magnetic moment of Sr1-xNixTiO3 is 1.99998, 1.99991, 2.00003 and 2.00005 µB at 12.5%, 25%, 50% and 75% concentration respectively, which emerge primarily due to Ni-3d electrons. Furthermore, the optical features (refraction, dielectric function, absorption, and reflectivity) have also been computed within energy range of 0-10 eV. Sr1-xNixTiO3 is optically active in visible to ultraviolet (UV) region owing to low reflectivity and high absorption. Results portray that the studied compound is a potential contender for its usage in the development of spintronic and optoelectronic devices.
期刊介绍:
Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.