Archaea-An International Microbiological Journal最新文献

筛选
英文 中文
Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences 针对16S rDNA序列的垃圾填埋场和湿地甲烷菌丰富度分子分析
IF 2.4 4区 生物学
Archaea-An International Microbiological Journal Pub Date : 2015-10-13 DOI: 10.1155/2015/563414
S. Yadav, Sharbadeb Kundu, S. Ghosh, S. S. Maitra
{"title":"Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences","authors":"S. Yadav, Sharbadeb Kundu, S. Ghosh, S. S. Maitra","doi":"10.1155/2015/563414","DOIUrl":"https://doi.org/10.1155/2015/563414","url":null,"abstract":"Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process.","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2015-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/563414","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65031390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Biotechnological Uses of Archaeal Proteins 古菌蛋白的生物技术应用
IF 2.4 4区 生物学
Archaea-An International Microbiological Journal Pub Date : 2015-10-12 DOI: 10.1155/2015/809758
F. Pecorari, V. Arcus, J. Wiegel
{"title":"Biotechnological Uses of Archaeal Proteins","authors":"F. Pecorari, V. Arcus, J. Wiegel","doi":"10.1155/2015/809758","DOIUrl":"https://doi.org/10.1155/2015/809758","url":null,"abstract":"Many industrial/biotechnological processes take place under extreme conditions of temperature, pH, salinity, or pressure which are not suitable for activities of proteins from model eukaryotic or common neutrophilic, mesophilic, and prokaryotic microorganisms. In contrast, Archaea offer a large panel of extremophile organisms that express proteins that are able to remain properly folded and functional under the harshest biophysical conditions. \u0000 \u0000The study of this group of organisms has uncovered archaeal enzymes and proteins with unusual properties compared to their traditional homologues. In addition, with their ease of production and better-behaved samples for X-ray crystallography, for example, archaeal proteins are often more convenient for structural biology studies than their eukaryotic equivalents. The knowledge thus gained can open routes to commercial biotechnological applications. These last years, with the emergence of next generation sequencing techniques to decode whole genomes and metagenomes and the pressure to develop “greener” industrial processes, the rate of new archaeal proteins reported has significantly increased, thereby widening again their potential of applications. In this special issue of Archaea, we present selected papers dealing with the uses of archaeal proteins as tools for various fields of biotechnologies and research. \u0000 \u0000DNA and RNA ligases are essential enzymes in living cells and have applications in molecular biology. A review by M. Tanabe et al. discusses the uses of DNA ligases and recent progress in deciphering their catalytic mechanisms via structural studies, and they describe how protein engineering can improve ligation efficiency of an archaeal DNA ligase over a broad temperature range. In another paper on ligases, C. R. Chambers and W. M. Patrick present the current state of knowledge on archaeal nucleic acid ligases including RNA ligases, highlighting their remarkable properties relevant to biotechnologists, and they discuss the modifications of the activities of archaeal RNA ligases by directed mutagenesis to develop more efficient molecular biology protocols. \u0000 \u0000J. A. Littlechild reviews research regarding the discovery and potential applications of a range of thermophilic archaeal proteins, illustrating the power of archaeal enzymes for various industrial biocatalysis. Then, an article by V. M. Gumerov et al. describes the characterization of a novel thermostable and multifunctional β-glycosidase from Acidilobus saccharovorans that displays a high tolerance to glucose, a desired property for such enzymes used to process lignocellulose biomass. C.-H. Wu et al. present a review summarizing the strategies used in engineering and characterizing three different forms of soluble hydrogenase I from the hyperthermophile Pyrococcus furiosus, an enzyme which has been used in vitro for hydrogen production. \u0000 \u0000Archaea are not only interesting for catalysis applications. J. C. Charlesworth and B. P. Burns giv","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2015-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/809758","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65160805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Production and Application of a Soluble Hydrogenase from Pyrococcus furiosus 炽热焦球菌可溶氢化酶的制备及应用
IF 2.4 4区 生物学
Archaea-An International Microbiological Journal Pub Date : 2015-10-12 DOI: 10.1155/2015/912582
Chang-Hao Wu, Patrick M McTernan, Mary E. Walter, M. Adams
{"title":"Production and Application of a Soluble Hydrogenase from Pyrococcus furiosus","authors":"Chang-Hao Wu, Patrick M McTernan, Mary E. Walter, M. Adams","doi":"10.1155/2015/912582","DOIUrl":"https://doi.org/10.1155/2015/912582","url":null,"abstract":"Hydrogen gas is a potential renewable alternative energy carrier that could be used in the future to help supplement humanity's growing energy needs. Unfortunately, current industrial methods for hydrogen production are expensive or environmentally unfriendly. In recent years research has focused on biological mechanisms for hydrogen production and specifically on hydrogenases, the enzyme responsible for catalyzing the reduction of protons to generate hydrogen. In particular, a better understanding of this enzyme might allow us to generate hydrogen that does not use expensive metals, such as platinum, as catalysts. The soluble hydrogenase I (SHI) from the hyperthermophile Pyrococcus furiosus, a member of the euryarchaeota, has been studied extensively and used in various biotechnological applications. This review summarizes the strategies used in engineering and characterizing three different forms of SHI and the properties of the recombinant enzymes. SHI has also been used in in vitro systems for hydrogen production and NADPH generation and these systems are also discussed.","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2015-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/912582","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64155804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
A Novel Highly Thermostable Multifunctional Beta-Glycosidase from Crenarchaeon Acidilobus saccharovorans 一种新型高耐热性多功能β -糖苷酶
IF 2.4 4区 生物学
Archaea-An International Microbiological Journal Pub Date : 2015-10-11 DOI: 10.1155/2015/978632
V. Gumerov, A. Rakitin, A. Mardanov, N. Ravin
{"title":"A Novel Highly Thermostable Multifunctional Beta-Glycosidase from Crenarchaeon Acidilobus saccharovorans","authors":"V. Gumerov, A. Rakitin, A. Mardanov, N. Ravin","doi":"10.1155/2015/978632","DOIUrl":"https://doi.org/10.1155/2015/978632","url":null,"abstract":"We expressed a putative β-galactosidase Asac_1390 from hyperthermophilic crenarchaeon Acidilobus saccharovorans in Escherichia coli and purified the recombinant enzyme. Asac_1390 is composed of 490 amino acid residues and showed high sequence similarity to family 1 glycoside hydrolases from various thermophilic Crenarchaeota. The maximum activity was observed at pH 6.0 and 93°C. The half-life of the enzyme at 90°C was about 7 hours. Asac_1390 displayed high tolerance to glucose and exhibits hydrolytic activity towards cellobiose and various aryl glucosides. The hydrolytic activity with p-nitrophenyl (pNP) substrates followed the order pNP-β-D-galactopyranoside (328 U mg−1), pNP-β-D-glucopyranoside (246 U mg−1), pNP-β-D-xylopyranoside (72 U mg−1), and pNP-β-D-mannopyranoside (28 U mg−1). Thus the enzyme was actually a multifunctional β-glycosidase. Therefore, the utilization of Asac_1390 may contribute to facilitating the efficient degradation of lignocellulosic biomass and help enhance bioconversion processes.","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2015-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/978632","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64192733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Archaeal MCM Proteins as an Analog for the Eukaryotic Mcm2–7 Helicase to Reveal Essential Features of Structure and Function 古细菌MCM蛋白作为真核Mcm2-7解旋酶的类似物揭示其结构和功能的基本特征
IF 2.4 4区 生物学
Archaea-An International Microbiological Journal Pub Date : 2015-10-11 DOI: 10.1155/2015/305497
Justin M. Miller, E. J. Enemark
{"title":"Archaeal MCM Proteins as an Analog for the Eukaryotic Mcm2–7 Helicase to Reveal Essential Features of Structure and Function","authors":"Justin M. Miller, E. J. Enemark","doi":"10.1155/2015/305497","DOIUrl":"https://doi.org/10.1155/2015/305497","url":null,"abstract":"In eukaryotes, the replicative helicase is the large multisubunit CMG complex consisting of the Mcm2–7 hexameric ring, Cdc45, and the tetrameric GINS complex. The Mcm2–7 ring assembles from six different, related proteins and forms the core of this complex. In archaea, a homologous MCM hexameric ring functions as the replicative helicase at the replication fork. Archaeal MCM proteins form thermostable homohexamers, facilitating their use as models of the eukaryotic Mcm2–7 helicase. Here we review archaeal MCM helicase structure and function and how the archaeal findings relate to the eukaryotic Mcm2–7 ring.","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2015-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/305497","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64895641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase. 从结构-功能分析到DNA连接酶实际应用的蛋白质工程。
IF 2.4 4区 生物学
Archaea-An International Microbiological Journal Pub Date : 2015-10-05 eCollection Date: 2015-01-01 DOI: 10.1155/2015/267570
Maiko Tanabe, Yoshizumi Ishino, Hirokazu Nishida
{"title":"From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase.","authors":"Maiko Tanabe,&nbsp;Yoshizumi Ishino,&nbsp;Hirokazu Nishida","doi":"10.1155/2015/267570","DOIUrl":"https://doi.org/10.1155/2015/267570","url":null,"abstract":"<p><p>DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures. </p>","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/267570","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34124246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Untapped Resources: Biotechnological Potential of Peptides and Secondary Metabolites in Archaea. 未开发资源:古生菌多肽和次生代谢物的生物技术潜力。
IF 2.4 4区 生物学
Archaea-An International Microbiological Journal Pub Date : 2015-10-04 eCollection Date: 2015-01-01 DOI: 10.1155/2015/282035
James C Charlesworth, Brendan P Burns
{"title":"Untapped Resources: Biotechnological Potential of Peptides and Secondary Metabolites in Archaea.","authors":"James C Charlesworth,&nbsp;Brendan P Burns","doi":"10.1155/2015/282035","DOIUrl":"https://doi.org/10.1155/2015/282035","url":null,"abstract":"<p><p>Archaea are an understudied domain of life often found in \"extreme\" environments in terms of temperature, salinity, and a range of other factors. Archaeal proteins, such as a wide range of enzymes, have adapted to function under these extreme conditions, providing biotechnology with interesting activities to exploit. In addition to producing structural and enzymatic proteins, archaea also produce a range of small peptide molecules (such as archaeocins) and other novel secondary metabolites such as those putatively involved in cell communication (acyl homoserine lactones), which can be exploited for biotechnological purposes. Due to the wide array of metabolites produced there is a great deal of biotechnological potential from antimicrobials such as diketopiperazines and archaeocins, as well as roles in the cosmetics and food industry. In this review we will discuss the diversity of small molecules, both peptide and nonpeptide, produced by archaea and their potential biotechnological applications. </p>","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/282035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34120297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 55
Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology. 古细菌核酸连接酶及其在生物技术中的应用前景。
IF 2.4 4区 生物学
Archaea-An International Microbiological Journal Pub Date : 2015-10-01 eCollection Date: 2015-01-01 DOI: 10.1155/2015/170571
Cecilia R Chambers, Wayne M Patrick
{"title":"Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology.","authors":"Cecilia R Chambers,&nbsp;Wayne M Patrick","doi":"10.1155/2015/170571","DOIUrl":"https://doi.org/10.1155/2015/170571","url":null,"abstract":"<p><p>With their ability to catalyse the formation of phosphodiester linkages, DNA ligases and RNA ligases are essential tools for many protocols in molecular biology and biotechnology. Currently, the nucleic acid ligases from bacteriophage T4 are used extensively in these protocols. In this review, we argue that the nucleic acid ligases from Archaea represent a largely untapped pool of enzymes with diverse and potentially favourable properties for new and emerging biotechnological applications. We summarise the current state of knowledge on archaeal DNA and RNA ligases, which makes apparent the relative scarcity of information on in vitro activities that are of most relevance to biotechnologists (such as the ability to join blunt- or cohesive-ended, double-stranded DNA fragments). We highlight the existing biotechnological applications of archaeal DNA ligases and RNA ligases. Finally, we draw attention to recent experiments in which protein engineering was used to modify the activities of the DNA ligase from Pyrococcus furiosus and the RNA ligase from Methanothermobacter thermautotrophicus, thus demonstrating the potential for further work in this area. </p>","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/170571","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34281263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Biochemical Characterisation of Phage Pseudomurein Endoisopeptidases PeiW and PeiP Using Synthetic Peptides. 噬菌体假尿素内异肽酶pew和PeiP合成肽的生化特性研究。
IF 2.4 4区 生物学
Archaea-An International Microbiological Journal Pub Date : 2015-09-21 eCollection Date: 2015-01-01 DOI: 10.1155/2015/828693
Linley R Schofield, Amy K Beattie, Catherine M Tootill, Debjit Dey, Ron S Ronimus
{"title":"Biochemical Characterisation of Phage Pseudomurein Endoisopeptidases PeiW and PeiP Using Synthetic Peptides.","authors":"Linley R Schofield,&nbsp;Amy K Beattie,&nbsp;Catherine M Tootill,&nbsp;Debjit Dey,&nbsp;Ron S Ronimus","doi":"10.1155/2015/828693","DOIUrl":"https://doi.org/10.1155/2015/828693","url":null,"abstract":"<p><p>Pseudomurein endoisopeptidases cause lysis of the cell walls of methanogens by cleaving the isopeptide bond Ala-ε-Lys in the peptide chain of pseudomurein. PeiW and PeiP are two thermostable pseudomurein endoisopeptidases encoded by phage ΨM100 of Methanothermobacter wolfei and phages ΨM1 and ΨM2 of Methanothermobacter marburgensis, respectively. A continuous assay using synthetic peptide substrates was developed and used in the biochemical characterisation of recombinant PeiW and PeiP. The advantages of these synthetic peptide substrates over natural substrates are sensitivity, high purity, and characterisation and the fact that they are more easily obtained than natural substrates. In the presence of a reducing agent, purified PeiW and PeiP each showed similar activity under aerobic and anaerobic conditions. Both enzymes required a divalent metal for activity and showed greater thermostability in the presence of Ca(2+). PeiW and PeiP involve a cysteine residue in catalysis and have a monomeric native conformation. The kinetic parameters, K(M) and k(cat), were determined, and the ε-isopeptide bond between alanine and lysine was confirmed as the bond lysed by these enzymes in pseudomurein. The new assay may have wider applications for the general study of peptidases and the identification of specific methanogens susceptible to lysis by specific pseudomurein endoisopeptidases.</p>","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/828693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34101862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Ecology and Distribution of Thaumarchaea in the Deep Hypolimnion of Lake Maggiore. 马焦雷湖深层浅水区索古菌的生态学与分布。
IF 2.4 4区 生物学
Archaea-An International Microbiological Journal Pub Date : 2015-08-25 eCollection Date: 2015-01-01 DOI: 10.1155/2015/590434
Manuela Coci, Nina Odermatt, Michaela M Salcher, Jakob Pernthaler, Gianluca Corno
{"title":"Ecology and Distribution of Thaumarchaea in the Deep Hypolimnion of Lake Maggiore.","authors":"Manuela Coci,&nbsp;Nina Odermatt,&nbsp;Michaela M Salcher,&nbsp;Jakob Pernthaler,&nbsp;Gianluca Corno","doi":"10.1155/2015/590434","DOIUrl":"https://doi.org/10.1155/2015/590434","url":null,"abstract":"<p><p>Ammonia-oxidizing Archaea (AOA) play an important role in the oxidation of ammonia in terrestrial, marine, and geothermal habitats, as confirmed by a number of studies specifically focused on those environments. Much less is known about the ecological role of AOA in freshwaters. In order to reach a high resolution at the Thaumarchaea community level, the probe MGI-535 was specifically designed for this study and applied to fluorescence in situ hybridization and catalyzed reporter deposition (CARD-FISH) analysis. We then applied it to a fine analysis of diversity and relative abundance of AOA in the deepest layers of the oligotrophic Lake Maggiore, confirming previous published results of AOA presence, but showing differences in abundance and distribution within the water column without significant seasonal trends with respect to Bacteria. Furthermore, phylogenetic analysis of AOA clone libraries from deep lake water and from a lake tributary, River Maggia, suggested the riverine origin of AOA of the deep hypolimnion of the lake. </p>","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2015-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/590434","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34013407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信