{"title":"Spiers Memorial Lecture: Quantum chemistry, classical heuristics, and quantum advantage","authors":"Garnet Kin-Lic Chan","doi":"10.1039/D4FD00141A","DOIUrl":"10.1039/D4FD00141A","url":null,"abstract":"<p >We describe the problems of quantum chemistry, the intuition behind classical heuristic methods used to solve them, a conjectured form of the classical complexity of quantum chemistry problems, and the subsequent opportunities for quantum advantage. This article is written for both quantum chemists and quantum information theorists. In particular, we attempt to summarize the domain of quantum chemistry problems as well as the chemical intuition that is applied to solve them within concrete statements (such as a classical heuristic cost conjecture) in the hope that this may stimulate future analysis.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"254 ","pages":" 11-52"},"PeriodicalIF":3.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00141a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Concluding remarks: Reflections on the Faraday Discussion on New Directions in Molecular Scattering","authors":"Mark Brouard","doi":"10.1039/D4FD00118D","DOIUrl":"10.1039/D4FD00118D","url":null,"abstract":"<p >These concluding remarks summarize the <em>Faraday Discussion</em> on New Directions in Molecular Scattering. The discussion brought together scientists from a wide range of disciplines, from astrochemistry to coherent quantum control, and the submitted papers highlighted the need for innovation in experimental methods and computational tools to tackle more complex systems, relevant to chemistry in the real world. As recorded in the previous pages of this discussion, the meeting saw lively debate on numerous topical issues. This summary outlines some of the highlighted key developments in the field, and points towards future directions of molecular scattering research.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"251 ","pages":" 666-675"},"PeriodicalIF":3.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00118d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasuhiro Umebayashi, Erika Otani, Hikari Watanabe and Jihae Han
{"title":"Speciation and dipole reorientation dynamics of glass-forming liquid electrolytes: Li[N(SO2CF3)2] mixtures of 1,3-propane sultone or tetrahydrothiophene-1,1-dioxide†","authors":"Yasuhiro Umebayashi, Erika Otani, Hikari Watanabe and Jihae Han","doi":"10.1039/D4FD00050A","DOIUrl":"10.1039/D4FD00050A","url":null,"abstract":"<p >Recently new ionic fluids such as super-concentrated electrolyte solutions, solvate ionic liquids and deep eutectic solvents have attracted much attention in the field of liquid electrolytes for next-generation electrochemical devices and processes. The basic composition of these new ionic fluids is similar among them; a solvent and a large/excess amount of salt mixtures, though the solvent is sometimes a solid at ambient temperatures. Here, we found and demonstrated that LiTFSA (TFSA = (CF<small><sub>3</sub></small>SO<small><sub>2</sub></small>)<small><sub>2</sub></small>N<small><sup>−</sup></small>) mixtures with 1,3-propane sultone (PS) or tetrahydrothiophene-1,1-dioxide (SL) yield a homogeneous liquid at room temperature within a wide range of compositions. In order to clarify the uniquely high Li<small><sup>+</sup></small> transference number in these mixtures, speciation and dipole reorientation dynamics were studied to provide evidence of large-size aggregate formation in these mixtures.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 42-54"},"PeriodicalIF":3.4,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Concluding remarks: biocatalysis","authors":"Uwe T. Bornscheuer","doi":"10.1039/D4FD00127C","DOIUrl":"10.1039/D4FD00127C","url":null,"abstract":"<p >Biocatalysis is a rapidly evolving field with increasing impact in organic synthesis, chemical manufacturing and medicine. The <em>Faraday Discussion</em> reflected the current state of biocatalysis, covering the design of <em>de novo</em> enzymatic activities, but especially methods for the improvement of enzymes targeting a broad range of applications (<em>i.e.</em>, hydroxylations by P450 monooxygenases, enzymatic deprotection of organic compounds under mild conditions, synthesis of chiral intermediates, plastic degradation, silicone polymer synthesis, and peptide synthesis). Central themes have been how to improve an enzyme using methods of rational design and directed evolution, informed by computer modelling and machine learning, and the incorporation of new catalytic functionalities to create hybrid and artificial enzymes.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"252 ","pages":" 507-515"},"PeriodicalIF":3.4,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00127c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marta M. Dolińska, Adam J. Kirwan and Clare F. Megarity
{"title":"Retuning the potential of the electrochemical leaf†","authors":"Marta M. Dolińska, Adam J. Kirwan and Clare F. Megarity","doi":"10.1039/D4FD00020J","DOIUrl":"10.1039/D4FD00020J","url":null,"abstract":"<p >The electrochemical leaf enables the electrification and control of multi-enzyme cascades by exploiting two discoveries: (i) the ability to electrify the photosynthetic enzyme ferredoxin NADP<small><sup>+</sup></small> reductase (FNR), driving it to catalyse the interconversion of NADP<small><sup>+</sup></small>/NADPH whilst it is entrapped in a highly porous, metal oxide electrode, and (ii) the evidence that additional enzymes can be co-entrapped in the electrode pores where, through one NADP(H)-dependent enzyme, extended cascades can be driven by electrical connection to FNR, <em>via</em> NADP(H) recycling. By changing a critical active-site tyrosine to serine, FNR’s exclusivity for NADP(H) is swapped for unphosphorylated NAD(H). Here we present an electrochemical study of this variant FNR, and show that in addition to the intended inversion of cofactor preference, this change to the active site has altered FNR’s tuning of the flavin reduction potential, making it less reductive. Exploiting the ability to monitor the variant’s activity with NADP(H) as a function of potential has revealed a trapped intermediate state, relieved only by applying a negative overpotential, which allows catalysis to proceed. Inhibition by NADP<small><sup>+</sup></small> (very tightly bound) with respect to NAD(H) turnover was also revealed and interestingly, this inhibition changes depending on the applied potential. These findings are of critical importance for future exploitation of the electrochemical leaf.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"252 ","pages":" 188-207"},"PeriodicalIF":3.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00020j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anushree Mondal, Pronay Roy, Jaclyn Carrannanto, Prathamesh M. Datar, Daniel J. DiRocco, Katherine Hunter and E. Neil G. Marsh
{"title":"Surveying the scope of aromatic decarboxylations catalyzed by prenylated-flavin dependent enzymes†","authors":"Anushree Mondal, Pronay Roy, Jaclyn Carrannanto, Prathamesh M. Datar, Daniel J. DiRocco, Katherine Hunter and E. Neil G. Marsh","doi":"10.1039/D4FD00006D","DOIUrl":"10.1039/D4FD00006D","url":null,"abstract":"<p >The prenylated-flavin mononucleotide-dependent decarboxylases (also known as UbiD-like enzymes) are the most recently discovered family of decarboxylases. The modified flavin facilitates the decarboxylation of unsaturated carboxylic acids through a novel mechanism involving 1,3-dipolar cyclo-addition chemistry. UbiD-like enzymes have attracted considerable interest for biocatalysis applications due to their ability to catalyse (de)carboxylation reactions on a broad range of aromatic substrates at otherwise unreactive carbon centres. There are now ∼35 000 protein sequences annotated as hypothetical UbiD-like enzymes. Sequence similarity network analyses of the UbiD protein family suggests that there are likely dozens of distinct decarboxylase enzymes represented within this family. Furthermore, many of the enzymes so far characterized can decarboxylate a broad range of substrates. Here we describe a strategy to identify potential substrates of UbiD-like enzymes based on detecting enzyme-catalysed solvent deuterium exchange into potential substrates. Using ferulic acid decarboxylase (FDC) as a model system, we tested a diverse range of aromatic and heterocyclic molecules for their ability to undergo enzyme-catalysed H/D exchange in deuterated buffer. We found that FDC catalyses H/D exchange, albeit at generally very low levels, into a wide range of small, aromatic molecules that have little resemblance to its physiological substrate. In contrast, the sub-set of aromatic carboxylic acids that are substrates for FDC-catalysed decarboxylation is much smaller. We discuss the implications of these findings for screening uncharacterized UbiD-like enzymes for novel (de)carboxylase activity.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"252 ","pages":" 208-222"},"PeriodicalIF":3.4,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00006d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew S. Emerson, Raphael Ogbodo and Claudio J. Margulis
{"title":"Spiers Memorial Lecture: From cold to hot, the structure and structural dynamics of dense ionic fluids†","authors":"Matthew S. Emerson, Raphael Ogbodo and Claudio J. Margulis","doi":"10.1039/D4FD00086B","DOIUrl":"10.1039/D4FD00086B","url":null,"abstract":"<p >The structure of ionic liquids (ILs), which a decade or two ago was the subject of polite but heated debate, is now much better understood. This has opened opportunities to ask more sophisticated questions about the role of structure in transport, the structure of systems with ions that are not prototypical, and the similarity between ILs and other dense ionic fluids such as the high-temperature inorganic molten salts; let alone the fact that new areas of research have emerged that sprung from our collective understanding of the structure of ILs such as the deep eutectic solvents, the polymerized ionic liquids, and the zwitterionic liquids. Yet, our understanding of the structure of prototypical ILs may not be as complete as we think it to be, given that recent experiments appear to show that in some cases there may be more than one liquid phase resulting in liquid–liquid (L–L) phase transitions. This article presents a perspective on what we think are key topics related to the structure and structural dynamics of ILs and to some extent high-temperature molten salts.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 11-25"},"PeriodicalIF":3.4,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00086b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marija Blazic, Candice Gautier, Thomas Norberg and Mikael Widersten
{"title":"High-throughput selection of (new) enzymes: phage display-mediated isolation of alkyl halide hydrolases from a library of active-site mutated epoxide hydrolases†","authors":"Marija Blazic, Candice Gautier, Thomas Norberg and Mikael Widersten","doi":"10.1039/D4FD00001C","DOIUrl":"10.1039/D4FD00001C","url":null,"abstract":"<p >Epoxide hydrolase StEH1, from potato, is similar in overall structural fold and catalytic mechanism to haloalkane dehalogenase DhlA from <em>Xanthobacter autotrophicus</em>. StEH1 displays low (promiscuous) hydrolytic activity with (2-chloro)- and (2-bromo)ethanebenzene producing 2-phenylethanol. To investigate possibilities to amplify these very low dehalogenase activities, StEH1 was subjected to targeted randomized mutagenesis at five active-site amino acid residues and the resulting protein library was challenged for reactivity towards a bait chloride substrate. Enzymes catalyzing the first half-reaction of a hydrolytic cycle were isolated following monovalent phage display of the mutated proteins. Several StEH1 derived enzymes were identified with enhanced dehalogenase activities.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"252 ","pages":" 115-126"},"PeriodicalIF":3.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00001c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matteo Boventi, Michele Mauri, Franca Castiglione and Roberto Simonutti
{"title":"Exploring the structure of type V deep eutectic solvents by xenon NMR spectroscopy","authors":"Matteo Boventi, Michele Mauri, Franca Castiglione and Roberto Simonutti","doi":"10.1039/D4FD00083H","DOIUrl":"10.1039/D4FD00083H","url":null,"abstract":"<p >Hydrophobic non-ionic (type V) deep eutectic solvents (DESs) have recently emerged as a new class of sustainable materials that have shown unique properties in several applications. In this study, type V DESs thymol : camphor, menthol : thymol and eutectic mixtures (EMs) based on menthol : carboxylic acids with variable chain length, are experimentally investigated using xenon NMR spectroscopy, with the aim to clarify the peculiar nanostructure of these materials. The results, obtained from the analysis of the <small><sup>129</sup></small>Xe chemical shifts and of the longitudinal relaxation times, reveal a correlation between the deviation from ideality of the DESs and their structure free volume. Furthermore, the effect of varying the composition of DESs and EMs on the liquid structure is also studied.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 118-128"},"PeriodicalIF":3.4,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00083h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical models for dense solutions","authors":"J.-F. Dufrêche, B. Siboulet and M. Duvail","doi":"10.1039/D4FD00084F","DOIUrl":"10.1039/D4FD00084F","url":null,"abstract":"<p >Here we examine the question of the chemical models widely used to describe dense solutions, particularly ionic solutions. First, a simple macroscopic analysis shows that, in the case of weak interactions, taking into account aggregated species amounts to modelling an effective attraction between solutes, although the stoichiometry used does not necessarily correspond to atomic reality. We then use a rigorous microscopic analysis to explain how, in the very general case, chemical models can be obtained from an atomic physical description. We show that there are no good or bad chemical models as long as we consider exact calculations. To obtain the simplest possible description, it is nevertheless advisable to take the speciation criterion that minimises the excess terms. Molecular simulations show that, very often, species can be defined simply by grouping ions which are in direct contact. In some cases, the appearance of macroscale clusters can be predicted.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 79-99"},"PeriodicalIF":3.4,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00084f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141146611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}