Faraday Discussions最新文献

筛选
英文 中文
Ionic fluids out of equilibrium: electrodeposition, dissolution, electron transfer, driving forces: general discussion 失去平衡的离子液体:电沉积、溶解、电子转移、驱动力:一般讨论。
IF 3.4 3区 化学
Faraday Discussions Pub Date : 2024-10-04 DOI: 10.1039/D4FD90036G
Andrew P. Abbott, Rob Atkin, Margarida Costa Gomes, Jean-François Dufrêche, Christopher E. Elgar, Y. K. Catherine Fung, Kateryna Goloviznina, Alexis Grimaud, Benworth Hansen, Jennifer M. Hartley, Christian Holm, Alexei Kornyshev, Kevin R. J. Lovelock, Daniel M. Markiewitz, Joshua Maurer, Shurui Miao, Susan Perkin, Frederik Philippi, Bernhard Roling, Nicolas Schaeffer, Monika Schönhoff, David J. Sconyers, Neave Taylor, Kazuhide Ueno, Adriaan van den Bruinhorst, Masayoshi Watanabe and Yuki Yamada
{"title":"Ionic fluids out of equilibrium: electrodeposition, dissolution, electron transfer, driving forces: general discussion","authors":"Andrew P. Abbott, Rob Atkin, Margarida Costa Gomes, Jean-François Dufrêche, Christopher E. Elgar, Y. K. Catherine Fung, Kateryna Goloviznina, Alexis Grimaud, Benworth Hansen, Jennifer M. Hartley, Christian Holm, Alexei Kornyshev, Kevin R. J. Lovelock, Daniel M. Markiewitz, Joshua Maurer, Shurui Miao, Susan Perkin, Frederik Philippi, Bernhard Roling, Nicolas Schaeffer, Monika Schönhoff, David J. Sconyers, Neave Taylor, Kazuhide Ueno, Adriaan van den Bruinhorst, Masayoshi Watanabe and Yuki Yamada","doi":"10.1039/D4FD90036G","DOIUrl":"10.1039/D4FD90036G","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 407-425"},"PeriodicalIF":3.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New directions in experiment and theory, interfaces, and interactions: general discussion 实验与理论、界面与互动的新方向:一般性讨论。
IF 3.4 3区 化学
Faraday Discussions Pub Date : 2024-10-03 DOI: 10.1039/D4FD90037E
Rob Atkin, Duncan W. Bruce, Robert A. W. Dryfe, Emmanuelle Dubois, Karen J. Edler, Christopher E. Elgar, Andrew Feeney, Kateryna Goloviznina, Timothy S. Groves, Benworth Hansen, John D. Holbrey, Christian Holm, Alexei Kornyshev, Claudio J. Margulis, Daniel M. Markiewitz, Richard P. Matthews, Joshua Maurer, Shurui Miao, Frederik Philippi, Elixabete Rezabal, Bernhard Roling, Benjamin Rotenberg, Joshua Sangoro, Monika Schönhoff, John M. Slattery, Małgorzata Swadźba-Kwaśny, Neave Taylor, Masayoshi Watanabe and Jake Yang
{"title":"New directions in experiment and theory, interfaces, and interactions: general discussion","authors":"Rob Atkin, Duncan W. Bruce, Robert A. W. Dryfe, Emmanuelle Dubois, Karen J. Edler, Christopher E. Elgar, Andrew Feeney, Kateryna Goloviznina, Timothy S. Groves, Benworth Hansen, John D. Holbrey, Christian Holm, Alexei Kornyshev, Claudio J. Margulis, Daniel M. Markiewitz, Richard P. Matthews, Joshua Maurer, Shurui Miao, Frederik Philippi, Elixabete Rezabal, Bernhard Roling, Benjamin Rotenberg, Joshua Sangoro, Monika Schönhoff, John M. Slattery, Małgorzata Swadźba-Kwaśny, Neave Taylor, Masayoshi Watanabe and Jake Yang","doi":"10.1039/D4FD90037E","DOIUrl":"10.1039/D4FD90037E","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 493-509"},"PeriodicalIF":3.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionic fluids at equilibrium: thermodynamics, nanostructure, phase behaviour, activity: general discussion 处于平衡状态的离子液体:热力学、纳米结构、相行为、活性:一般性讨论。
IF 3.4 3区 化学
Faraday Discussions Pub Date : 2024-10-03 DOI: 10.1039/D4FD90035A
Andrew P. Abbott, Rob Atkin, Duncan W. Bruce, Paola Carbone, Giacomo Damilano, Robert A. W. Dryfe, Jean-Francois Dufrêche, Karen J. Edler, Y. K. Catherine Fung, Kateryna Goloviznina, Margarida Costa Gomes, Alexis Grimaud, Timothy S. Groves, Jennifer M. Hartley, John D. Holbrey, Christian Holm, Pierre Illien, Roland Kjellander, Alexei Kornyshev, Kevin R. J. Lovelock, Daniel M. Markiewitz, Joshua Maurer, Shurui Miao, Naoya Nishi, Beatriz Rocha de Moraes, Bernhard Roling, Benjamin Rotenberg, Joshua Sangoro, Nicolas Schaeffer, Monika Schönhoff, David J. Sconyers, John M. Slattery, Małgorzata Swadźba-Kwaśny, Adriaan van den Bruinhorst and Tom Welton
{"title":"Ionic fluids at equilibrium: thermodynamics, nanostructure, phase behaviour, activity: general discussion","authors":"Andrew P. Abbott, Rob Atkin, Duncan W. Bruce, Paola Carbone, Giacomo Damilano, Robert A. W. Dryfe, Jean-Francois Dufrêche, Karen J. Edler, Y. K. Catherine Fung, Kateryna Goloviznina, Margarida Costa Gomes, Alexis Grimaud, Timothy S. Groves, Jennifer M. Hartley, John D. Holbrey, Christian Holm, Pierre Illien, Roland Kjellander, Alexei Kornyshev, Kevin R. J. Lovelock, Daniel M. Markiewitz, Joshua Maurer, Shurui Miao, Naoya Nishi, Beatriz Rocha de Moraes, Bernhard Roling, Benjamin Rotenberg, Joshua Sangoro, Nicolas Schaeffer, Monika Schönhoff, David J. Sconyers, John M. Slattery, Małgorzata Swadźba-Kwaśny, Adriaan van den Bruinhorst and Tom Welton","doi":"10.1039/D4FD90035A","DOIUrl":"10.1039/D4FD90035A","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 289-313"},"PeriodicalIF":3.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Concluding remarks: Faraday Discussion on NMR crystallography 结束语:法拉第核磁共振晶体学讨论。
IF 3.4 3区 化学
Faraday Discussions Pub Date : 2024-10-01 DOI: 10.1039/D4FD00155A
Sharon E. Ashbrook
{"title":"Concluding remarks: Faraday Discussion on NMR crystallography","authors":"Sharon E. Ashbrook","doi":"10.1039/D4FD00155A","DOIUrl":"10.1039/D4FD00155A","url":null,"abstract":"<p >This <em>Faraday Discussion</em> explored the field of NMR crystallography, and considered recent developments in experimental and theoretical approaches, new advances in machine learning and in the generation and handling of large amounts of data. Applications to a wide range of disordered, amorphous and dynamic systems demonstrated the range and quality of information available from this approach and the challenges that are faced in exploiting automation and developing best practice. In these closing remarks I will reflect on the discussions on the current state of the art, questions about what we want from these studies, how accurate we need results to be, how we best generate models for complex materials and what machine learning approaches can offer. These remarks close with thoughts about the future direction of the field, who will be carrying out this type of research, how they might be doing it and what their focus will be, along with likely possible challenges and opportunities.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":" 0","pages":" 583-601"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fd/d4fd00155a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-reference coupled cluster theory using the normal ordered exponential ansatz 利用正序指数解析的多参考耦合聚类理论。
IF 3.4 3区 化学
Faraday Discussions Pub Date : 2024-10-01 DOI: 10.1039/D4FD00044G
Alexander D. Gunasekera, Nicholas Lee and David P. Tew
{"title":"Multi-reference coupled cluster theory using the normal ordered exponential ansatz","authors":"Alexander D. Gunasekera, Nicholas Lee and David P. Tew","doi":"10.1039/D4FD00044G","DOIUrl":"10.1039/D4FD00044G","url":null,"abstract":"<p >Properly spin-adapted coupled-cluster theory for general open-shell configurations remains an active area of research in electronic structure theory. In this contribution we examine Lindgren's normal-ordered exponential ansatz to correlate specific spin states using spin-free excitation operators, with the aid of automatic equation generation software. We present an intermediately normalised and size-extensive reformulation of the unlinked working equations, and analyse the performance of the method with single and double excitations for simple molecular systems in terms of accuracy and size-consistency.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"254 ","pages":" 170-190"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large property models: a new generative machine-learning formulation for molecules 大型属性模型:一种新的分子生成机器学习公式。
IF 3.4 3区 化学
Faraday Discussions Pub Date : 2024-09-27 DOI: 10.1039/D4FD00113C
Tianfan Jin, Veerupaksh Singla, Hsuan-Hao Hsu and Brett M. Savoie
{"title":"Large property models: a new generative machine-learning formulation for molecules","authors":"Tianfan Jin, Veerupaksh Singla, Hsuan-Hao Hsu and Brett M. Savoie","doi":"10.1039/D4FD00113C","DOIUrl":"10.1039/D4FD00113C","url":null,"abstract":"<p >Generative models for the inverse design of molecules with particular properties have been heavily hyped, but have yet to demonstrate significant gains over machine-learning-augmented expert intuition. A major challenge of such models is their limited accuracy in predicting molecules with targeted properties in the data-scarce regime, which is the regime typical of the prized outliers that it is hoped inverse models will discover. For example, activity data for a drug target or stability data for a material may only number in the tens to hundreds of samples, which is insufficient to learn an accurate and reasonably general property-to-structure inverse mapping from scratch. We’ve hypothesized that the property-to-structure mapping becomes unique when a sufficient number of properties are supplied to the models during training. This hypothesis has several important corollaries if true. It would imply that data-scarce properties can be completely determined using a set of more accessible molecular properties. It would also imply that a generative model trained on multiple properties would exhibit an accuracy phase transition after achieving a sufficient size—a process analogous to what has been observed in the context of large language models. To interrogate these behaviors, we have built the first transformers trained on the property-to-molecular-graph task, which we dub “large property models” (LPMs). A key ingredient is supplementing these models during training with relatively basic but abundant chemical property data. The motivation for the large-property-model paradigm, the model architectures, and case studies are presented here.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"256 ","pages":" 104-119"},"PeriodicalIF":3.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fd/d4fd00113c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of uncertainty of neural fingerprint-based models† 基于神经指纹模型的不确定性分析。
IF 3.4 3区 化学
Faraday Discussions Pub Date : 2024-09-25 DOI: 10.1039/D4FD00095A
Christian W. Feldmann, Jochen Sieg and Miriam Mathea
{"title":"Analysis of uncertainty of neural fingerprint-based models†","authors":"Christian W. Feldmann, Jochen Sieg and Miriam Mathea","doi":"10.1039/D4FD00095A","DOIUrl":"10.1039/D4FD00095A","url":null,"abstract":"<p >Machine learning has gained popularity for predicting molecular properties based on molecular structure. This study explores the uncertainty estimates of neural fingerprint-based models by comparing pure graph neural networks (GNN) to classical machine learning algorithms combined with neural fingerprints. We investigate the advantage of extracting the neural fingerprint from the GNN and integrating it into a method known for producing better-calibrated probability estimates. Comparisons are made using three classical machine learning methods and the Chemprop model, considering different molecular representations and calibration techniques. We utilize 19 datasets from Toxcast, reflecting real-world scenarios with balanced accuracies ranging from 0.6 to 0.8. Results demonstrate that neural fingerprints combined with classical machine learning methods exhibit a slight decrease in prediction performance compared to the native Chemprop model. However, these models provide significantly improved uncertainty estimates. Notably, uncertainty estimates of neural fingerprint-based methods remain relatively robust for molecules dissimilar to the training set. This suggests that methods like random forest with neural fingerprints can deliver strong prediction performance and reliable uncertainty estimates. When considering both performance and uncertainty, the calibrated Chemprop model and the combination of neural fingerprints with random forest or support vector classifier (SVC) yield comparable results. Surprisingly, the SVC method shows promising performance when combined with neural or count fingerprints. These findings are particularly relevant in real-world industrial projects where accurate predictions and reliable uncertainty estimates are crucial.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"256 ","pages":" 551-567"},"PeriodicalIF":3.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metastable layered lithium-rich niobium and tantalum oxides via nearly instantaneous cation exchange† 通过近乎瞬时的阳离子交换实现可蜕变的层状富锂铌和钽氧化物。
IF 3.4 3区 化学
Faraday Discussions Pub Date : 2024-09-20 DOI: 10.1039/D4FD00103F
Sarah L. Ko, Jordan A. Dorrell, Andrew J. Morris and Kent J. Griffith
{"title":"Metastable layered lithium-rich niobium and tantalum oxides via nearly instantaneous cation exchange†","authors":"Sarah L. Ko, Jordan A. Dorrell, Andrew J. Morris and Kent J. Griffith","doi":"10.1039/D4FD00103F","DOIUrl":"10.1039/D4FD00103F","url":null,"abstract":"<p >Lithium-rich early transition metal oxides are the source of excess removeable lithium that affords high energy density to lithium-rich battery cathodes. They are also candidates for solid electrolytes in all-solid-state batteries. These highly ionic compounds are sparse on phase diagrams of thermodynamically stable oxides, but soft chemical routes offer an alternative to explore new alkali-rich crystal chemistries. In this work, a new layered polymorph of Li<small><sub>3</sub></small>NbO<small><sub>4</sub></small> with coplanar [Nb<small><sub>4</sub></small>O<small><sub>16</sub></small>]<small><sup>12−</sup></small> clusters is discovered through ion exchange chemistry. A more detailed study of the ion exchange reaction reveals that it takes place almost instantaneously, changing the crystal volume by more than 22% within seconds. The transformation of coplanar [Nb<small><sub>4</sub></small>O<small><sub>16</sub></small>]<small><sup>12−</sup></small> in L-Li<small><sub>3</sub></small>NbO<small><sub>4</sub></small> into the supertetrahedral [Nb<small><sub>4</sub></small>O<small><sub>16</sub></small>]<small><sup>12−</sup></small> clusters found in the stable cubic c-Li<small><sub>3</sub></small>NbO<small><sub>4</sub></small> is also explored. Furthermore, this synthetic pathway is extended to access a new layered polymorph of Li<small><sub>3</sub></small>TaO<small><sub>4</sub></small>. NMR crystallography with <small><sup>6,7</sup></small>Li, <small><sup>23</sup></small>Na, and <small><sup>93</sup></small>Nb NMR, X-ray diffraction, neutron diffraction, and first-principles calculations is applied to A<small><sub>3</sub></small>MO<small><sub>4</sub></small> (A = Li, Na; M = Nb, Ta) to identify local and long-range atomic structure, to monitor the unusually rapid reaction progression, and to track the phase transitions from the metastable layered phases to the known compounds found using high-temperature synthesis. A mechanism is proposed whereby some sodium is retained at short reaction times, which then undergoes proton exchange during water washing, forming a phase with hydrogen bonds bridging the coplanar [Nb<small><sub>4</sub></small>O<small><sub>16</sub></small>]<small><sup>12−</sup></small> clusters. This study has implications for lithium-rich transition metal oxides and associated battery materials and for ion exchange chemistry in non-framework structures. The role of techniques that can detect light elements, local structure, and subtle structural changes in soft-chemical synthesis is emphasized.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":" 0","pages":" 429-450"},"PeriodicalIF":3.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spiers Memorial Lecture: How to do impactful research in artificial intelligence for chemistry and materials science 如何在化学和材料科学领域开展有影响力的人工智能研究。
IF 3.4 3区 化学
Faraday Discussions Pub Date : 2024-09-13 DOI: 10.1039/D4FD00153B
Austin H. Cheng, Cher Tian Ser, Marta Skreta, Andrés Guzmán-Cordero, Luca Thiede, Andreas Burger, Abdulrahman Aldossary, Shi Xuan Leong, Sergio Pablo-García, Felix Strieth-Kalthoff and Alán Aspuru-Guzik
{"title":"Spiers Memorial Lecture: How to do impactful research in artificial intelligence for chemistry and materials science","authors":"Austin H. Cheng, Cher Tian Ser, Marta Skreta, Andrés Guzmán-Cordero, Luca Thiede, Andreas Burger, Abdulrahman Aldossary, Shi Xuan Leong, Sergio Pablo-García, Felix Strieth-Kalthoff and Alán Aspuru-Guzik","doi":"10.1039/D4FD00153B","DOIUrl":"10.1039/D4FD00153B","url":null,"abstract":"<p >Machine learning has been pervasively touching many fields of science. Chemistry and materials science are no exception. While machine learning has been making a great impact, it is still not reaching its full potential or maturity. In this perspective, we first outline current applications across a diversity of problems in chemistry. Then, we discuss how machine learning researchers view and approach problems in the field. Finally, we provide our considerations for maximizing impact when researching machine learning for chemistry.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"256 ","pages":" 10-60"},"PeriodicalIF":3.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fd/d4fd00153b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
List of participants 与会者名单
IF 3.4 3区 化学
Faraday Discussions Pub Date : 2024-09-13
{"title":"List of participants","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"252 ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信