Neil S Hockley, Frauke Bahlmann, Bernadette Fulton
{"title":"Analog-to-digital conversion to accommodate the dynamics of live music in hearing instruments.","authors":"Neil S Hockley, Frauke Bahlmann, Bernadette Fulton","doi":"10.1177/1084713812471906","DOIUrl":"https://doi.org/10.1177/1084713812471906","url":null,"abstract":"<p><p>Hearing instrument design focuses on the amplification of speech to reduce the negative effects of hearing loss. Many amateur and professional musicians, along with music enthusiasts, also require their hearing instruments to perform well when listening to the frequent, high amplitude peaks of live music. One limitation, in most current digital hearing instruments with 16-bit analog-to-digital (A/D) converters, is that the compressor before the A/D conversion is limited to 95 dB (SPL) or less at the input. This is more than adequate for the dynamic range of speech; however, this does not accommodate the amplitude peaks present in live music. The hearing instrument input compression system can be adjusted to accommodate for the amplitudes present in music that would otherwise be compressed before the A/D converter in the hearing instrument. The methodology behind this technological approach will be presented along with measurements to demonstrate its effectiveness.</p>","PeriodicalId":48972,"journal":{"name":"Trends in Amplification","volume":"16 3","pages":"146-58"},"PeriodicalIF":0.0,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1084713812471906","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31139985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in AmplificationPub Date : 2012-09-01Epub Date: 2012-11-30DOI: 10.1177/1084713812468513
Richard Einhorn
{"title":"Observations from a musician with hearing loss.","authors":"Richard Einhorn","doi":"10.1177/1084713812468513","DOIUrl":"https://doi.org/10.1177/1084713812468513","url":null,"abstract":"<p><p>Extensive personal experience with professional recording and audio signal processing technology has enabled the author to continue his music career after experiencing sudden sensorineural hearing loss. The iPhone™ is one such device that has been found useful for many music and general listening situations that would otherwise be intractable. Additional techniques and technologies are described that the author has found useful for specific situations, including music composition, rehearsal, and enjoyment.</p>","PeriodicalId":48972,"journal":{"name":"Trends in Amplification","volume":"16 3","pages":"179-82"},"PeriodicalIF":0.0,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1084713812468513","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31092620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in AmplificationPub Date : 2012-09-01Epub Date: 2012-11-19DOI: 10.1177/1084713812465494
Brian C J Moore
{"title":"Effects of bandwidth, compression speed, and gain at high frequencies on preferences for amplified music.","authors":"Brian C J Moore","doi":"10.1177/1084713812465494","DOIUrl":"10.1177/1084713812465494","url":null,"abstract":"<p><p>This article reviews a series of studies on the factors influencing sound quality preferences, mostly for jazz and classical music stimuli. The data were obtained using ratings of individual stimuli or using the method of paired comparisons. For normal-hearing participants, the highest ratings of sound quality were obtained when the reproduction bandwidth was wide (55 to 16000 Hz) and ripples in the frequency response were small (less than ± 5 dB). For hearing-impaired participants listening via a simulated five-channel compression hearing aid with gains set using the CAM2 fitting method, preferences for upper cutoff frequency varied across participants: Some preferred a 7.5- or 10-kHz upper cutoff frequency over a 5-kHz cutoff frequency, and some showed the opposite preference. Preferences for a higher upper cutoff frequency were associated with a shallow high-frequency slope of the audiogram. A subsequent study comparing the CAM2 and NAL-NL2 fitting methods, with gains slightly reduced for participants who were not experienced hearing aid users, showed a consistent preference for CAM2. Since the two methods differ mainly in the gain applied for frequencies above 4 kHz (CAM2 recommending higher gain than NAL-NL2), these results suggest that extending the upper cutoff frequency is beneficial. A system for reducing \"overshoot\" effects produced by compression gave small but significant benefits for sound quality of a percussion instrument (xylophone). For a high-input level (80 dB SPL), slow compression was preferred over fast compression.</p>","PeriodicalId":48972,"journal":{"name":"Trends in Amplification","volume":"16 3","pages":"159-72"},"PeriodicalIF":0.0,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040859/pdf/10.1177_1084713812465494.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31065909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Musicians and hearing aid design--is your hearing instrument being overworked?","authors":"Mark Schmidt","doi":"10.1177/1084713812471586","DOIUrl":"https://doi.org/10.1177/1084713812471586","url":null,"abstract":"<p><p>Music can have sound levels that are in excess of the capability of most modern digital hearing aids to transduce sound without significant distortion. One innovation is to use a hearing aid microphone that is less sensitive to some of the lower frequency intense components of music, thereby providing the analog-to-digital (A/D) converter with an input that is within its optimal operating region. The \"missing\" low-frequency information can still enter through an unoccluded earmold as unamplified sound and be part of the entire music listening experience. Technical issues with this alternative microphone configuration include an increase in the internal noise floor of the hearing aid, but with judicious use of expansion, the noise floor can significantly be reduced. Other issues relate to fittings where significant low-frequency amplification is also required, but this type of fitting can be optimized in the fitting software by adding amplification after the A/D bottle neck.</p>","PeriodicalId":48972,"journal":{"name":"Trends in Amplification","volume":"16 3","pages":"140-5"},"PeriodicalIF":0.0,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1084713812471586","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31139984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in AmplificationPub Date : 2012-06-01Epub Date: 2012-08-12DOI: 10.1177/1084713812454225
Valeriy Shafiro, Stanley Sheft, Brian Gygi, Kim Thien N Ho
{"title":"The influence of environmental sound training on the perception of spectrally degraded speech and environmental sounds.","authors":"Valeriy Shafiro, Stanley Sheft, Brian Gygi, Kim Thien N Ho","doi":"10.1177/1084713812454225","DOIUrl":"https://doi.org/10.1177/1084713812454225","url":null,"abstract":"<p><p>Perceptual training with spectrally degraded environmental sounds results in improved environmental sound identification, with benefits shown to extend to untrained speech perception as well. The present study extended those findings to examine longer-term training effects as well as effects of mere repeated exposure to sounds over time. Participants received two pretests (1 week apart) prior to a week-long environmental sound training regimen, which was followed by two posttest sessions, separated by another week without training. Spectrally degraded stimuli, processed with a four-channel vocoder, consisted of a 160-item environmental sound test, word and sentence tests, and a battery of basic auditory abilities and cognitive tests. Results indicated significant improvements in all speech and environmental sound scores between the initial pretest and the last posttest with performance increments following both exposure and training. For environmental sounds (the stimulus class that was trained), the magnitude of positive change that accompanied training was much greater than that due to exposure alone, with improvement for untrained sounds roughly comparable to the speech benefit from exposure. Additional tests of auditory and cognitive abilities showed that speech and environmental sound performance were differentially correlated with tests of spectral and temporal-fine-structure processing, whereas working memory and executive function were correlated with speech, but not environmental sound perception. These findings indicate generalizability of environmental sound training and provide a basis for implementing environmental sound training programs for cochlear implant (CI) patients.</p>","PeriodicalId":48972,"journal":{"name":"Trends in Amplification","volume":"16 2","pages":"83-101"},"PeriodicalIF":0.0,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1084713812454225","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30832621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in AmplificationPub Date : 2012-06-01Epub Date: 2012-06-13DOI: 10.1177/1084713812448547
Ming Zhang
{"title":"Response pattern based on the amplitude of ear canal recorded cochlear microphonic waveforms across acoustic frequencies in normal hearing subjects.","authors":"Ming Zhang","doi":"10.1177/1084713812448547","DOIUrl":"https://doi.org/10.1177/1084713812448547","url":null,"abstract":"<p><p>Low-frequency otoacoustic emissions (OAEs) are often concealed by acoustic background noise such as those from a patient's breathing and from the environment during recording in clinics. When using electrocochleaography (ECochG or ECoG), such as cochlear microphonics (CMs), acoustic background noise do not contaminate the recordings. Our objective is to study the response pattern of CM waveforms (CMWs) to explore an alternative approach in assessing cochlear functions. In response to a 14-msec tone burst across several acoustic frequencies, CMWs were recorded at the ear canal from ten normal hearing subjects. A relatively long tone burst has a relatively narrow frequency band. The CMW amplitudes among different frequencies were compared. The CMW amplitudes among different frequencies were compared. Two features were observed in the response pattern of CMWs: the amplitude of CMWs decreased with an increase of stimulus frequency of the tone bursts; and such a decrease occurred at a faster rate at lower frequencies than at higher frequencies. Five factors as potential mechanisms for these features are proposed. Clinical applications such as hearing screening are discussed. Therefore, the response pattern of CMWs suggests that they may be used as an alternative to OAEs in the assessment of cochlear functions in the clinic, especially at low frequencies.</p>","PeriodicalId":48972,"journal":{"name":"Trends in Amplification","volume":"16 2","pages":"117-26"},"PeriodicalIF":0.0,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1084713812448547","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30689023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in AmplificationPub Date : 2012-06-01Epub Date: 2012-07-11DOI: 10.1177/1084713812451159
Shu-Chen Peng, Monita Chatterjee, Nelson Lu
{"title":"Acoustic cue integration in speech intonation recognition with cochlear implants.","authors":"Shu-Chen Peng, Monita Chatterjee, Nelson Lu","doi":"10.1177/1084713812451159","DOIUrl":"10.1177/1084713812451159","url":null,"abstract":"<p><p>The present article reports on the perceptual weighting of prosodic cues in question-statement identification by adult cochlear implant (CI) listeners. Acoustic analyses of normal-hearing (NH) listeners' production of sentences spoken as questions or statements confirmed that in English the last bisyllabic word in a sentence carries the dominant cues (F0, duration, and intensity patterns) for the contrast. Furthermore, these analyses showed that the F0 contour is the primary cue for the question-statement contrast, with intensity and duration changes conveying important but less reliable information. On the basis of these acoustic findings, the authors examined adult CI listeners' performance in two question-statement identification tasks. In Task 1, 13 CI listeners' question-statement identification accuracy was measured using naturally uttered sentences matched for their syntactic structures. In Task 2, the same listeners' perceptual cue weighting in question-statement identification was assessed using resynthesized single-word stimuli, within which fundamental frequency (F0), intensity, and duration properties were systematically manipulated. Both tasks were also conducted with four NH listeners with full-spectrum and noise-band-vocoded stimuli. Perceptual cue weighting was assessed by comparing the estimated coefficients in logistic models fitted to the data. Of the 13 CI listeners, 7 achieved high performance levels in Task 1. The results of Task 2 indicated that multiple sources of acoustic cues for question-statement identification were utilized to different extents depending on the listening conditions (e.g., full spectrum vs. spectrally degraded) or the listeners' hearing and amplification status (e.g., CI vs. NH).</p>","PeriodicalId":48972,"journal":{"name":"Trends in Amplification","volume":"16 2","pages":"67-82"},"PeriodicalIF":0.0,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560417/pdf/10.1177_1084713812451159.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30757953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in AmplificationPub Date : 2012-03-01Epub Date: 2012-04-17DOI: 10.1177/1084713811434617
John F P Bridges, Angela T Lataille, Christine Buttorff, Sharon White, John K Niparko
{"title":"Consumer preferences for hearing aid attributes: a comparison of rating and conjoint analysis methods.","authors":"John F P Bridges, Angela T Lataille, Christine Buttorff, Sharon White, John K Niparko","doi":"10.1177/1084713811434617","DOIUrl":"https://doi.org/10.1177/1084713811434617","url":null,"abstract":"<p><p>Low utilization of hearing aids has drawn increased attention to the study of consumer preferences using both simple ratings (e.g., Likert scale) and conjoint analyses, but these two approaches often produce inconsistent results. The study aims to directly compare Likert scales and conjoint analysis in identifying important attributes associated with hearing aids among those with hearing loss. Seven attributes of hearing aids were identified through qualitative research: performance in quiet settings, comfort, feedback, frequency of battery replacement, purchase price, water and sweat resistance, and performance in noisy settings. The preferences of 75 outpatients with hearing loss were measured with both a 5-point Likert scale and with 8 paired-comparison conjoint tasks (the latter being analyzed using OLS [ordinary least squares] and logistic regression). Results were compared by examining implied willingness-to-pay and Pearson's Rho. A total of 56 respondents (75%) provided complete responses. Two thirds of respondents were male, most had sensorineural hearing loss, and most were older than 50; 44% of respondents had never used a hearing aid. Both methods identified improved performance in noisy settings as the most valued attribute. Respondents were twice as likely to buy a hearing aid with better functionality in noisy environments (p < .001), and willingness to pay for this attribute ranged from US$2674 on the Likert to US$9000 in the conjoint analysis. The authors find a high level of concordance between the methods-a result that is in stark contrast with previous research. The authors conclude that their result stems from constraining the levels on the Likert scale.</p>","PeriodicalId":48972,"journal":{"name":"Trends in Amplification","volume":"16 1","pages":"40-8"},"PeriodicalIF":0.0,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1084713811434617","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30583255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in AmplificationPub Date : 2012-03-01Epub Date: 2012-04-17DOI: 10.1177/1084713812440336
Takayuki Okano, Matthew W Kelley
{"title":"Stem cell therapy for the inner ear: recent advances and future directions.","authors":"Takayuki Okano, Matthew W Kelley","doi":"10.1177/1084713812440336","DOIUrl":"https://doi.org/10.1177/1084713812440336","url":null,"abstract":"<p><p>In vertebrates, perception of sound, motion, and balance is mediated through mechanosensory hair cells located within the inner ear. In mammals, hair cells are only generated during a short period of embryonic development. As a result, loss of hair cells as a consequence of injury, disease, or genetic mutation, leads to permanent sensory deficits. At present, cochlear implantation is the only option for profound hearing loss. However, outcomes are still variable and even the best implant cannot provide the acuity of a biological ear. The recent emergence of stem cell technology has the potential to open new approaches for hair cell regeneration. The goal of this review is to summarize the current state of inner ear stem cell research from a viewpoint of its clinical application for inner ear disorders to illustrate how complementary studies have the potential to promote and refine stem cell therapies for inner ear diseases. The review initially discusses our current understanding of the genetic pathways that regulate hair cell formation from inner ear progenitors during normal development. Subsequent sections discuss the possible use of endogenous inner ear stem cells to induce repair as well as the initial studies aimed at transplanting stem cells into the ear.</p>","PeriodicalId":48972,"journal":{"name":"Trends in Amplification","volume":"16 1","pages":"4-18"},"PeriodicalIF":0.0,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1084713812440336","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30584295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}