{"title":"Neural Methods for Data-to-text Generation","authors":"Mandar Sharma, Ajay Kumar Gogineni, Naren Ramakrishnan","doi":"10.1145/3660639","DOIUrl":"https://doi.org/10.1145/3660639","url":null,"abstract":"<p>The neural boom that has sparked natural language processing (NLP) research throughout the last decade has similarly led to significant innovations in data-to-text generation (D2T). This survey offers a consolidated view into the neural D2T paradigm with a structured examination of the approaches, benchmark datasets, and evaluation protocols. This survey draws boundaries separating D2T from the rest of the natural language generation (NLG) landscape, encompassing an up-to-date synthesis of the literature, and highlighting the stages of technological adoption from within and outside the greater NLG umbrella. With this holistic view, we highlight promising avenues for D2T research that not only focus on the design of linguistically capable systems but also systems that exhibit fairness and accountability.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140925674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Morales-García, Antonio Llanes, Francisco Arcas-Túnez, Fernando Terroso-Sáenz
{"title":"Developing Time Series Forecasting Models with Generative Large Language Models","authors":"Juan Morales-García, Antonio Llanes, Francisco Arcas-Túnez, Fernando Terroso-Sáenz","doi":"10.1145/3663485","DOIUrl":"https://doi.org/10.1145/3663485","url":null,"abstract":"<p>Nowadays, Generative Large Language Models (GLLMs) have made a significant impact in the field of Artificial Intelligence (AI). One of the domains extensively explored for these models is their ability as generators of functional source code for software projects. Nevertheless, their potential as assistants to write the code needed to generate and model Machine Learning (ML) or Deep Learning (DL) architectures has not been fully explored to date. For this reason, this work focuses on evaluating the extent to which different tools based on GLLMs, such as ChatGPT or Copilot, are able to correctly define the source code necessary to generate viable predictive models. The use case defined is the forecasting of a time series that reports the indoor temperature of a greenhouse. The results indicate that, while it is possible to achieve good accuracy metrics with simple predictive models generated by GLLMs, the composition of predictive models with complex architectures using GLLMs is still far from improving the accuracy of predictive models generated by human data scientists.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140925266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuansheng Wu, Hanqin Wan, Qiaoyu Tan, Wenlin Yao, Ninghao Liu
{"title":"DIRECT: Dual Interpretable Recommendation with Multi-aspect Word Attribution","authors":"Xuansheng Wu, Hanqin Wan, Qiaoyu Tan, Wenlin Yao, Ninghao Liu","doi":"10.1145/3663483","DOIUrl":"https://doi.org/10.1145/3663483","url":null,"abstract":"<p>Recommending products to users with intuitive explanations helps improve the system in transparency, persuasiveness, and satisfaction. Existing interpretation techniques include post-hoc methods and interpretable modeling. The former category could quantitatively analyze input contribution to model prediction but has limited interpretation faithfulness, while the latter could explain model internal mechanisms but may not directly attribute model predictions to input features. In this study, we propose a novel <underline>D</underline>ual <underline>I</underline>nterpretable <underline>Rec</underline>ommenda<underline>t</underline>ion model called DIRECT, which integrates ideas of the two interpretation categories to inherit their advantages and avoid limitations. Specifically, DIRECT makes use of item descriptions as explainable evidence for recommendation. First, similar to the post-hoc interpretation, DIRECT could attribute the prediction of a user preference score to textual words of the item descriptions. The attribution of each word is related to its sentiment polarity and word importance, where a word is important if it corresponds to an item aspect that the user is interested in. Second, to improve the interpretability of embedding space, we propose to extract high-level concepts from embeddings, where each concept corresponds to an item aspect. To learn discriminative concepts, we employ a concept-bottleneck layer, and maximize the coding rate reduction on word-aspect embeddings by leveraging a word-word affinity graph extracted from a pre-trained language model. In this way, DIRECT simultaneously achieves faithful attribution and usable interpretation of embedding space. We also show that DIRECT achieves linear inference time complexity regarding the length of item reviews. We conduct experiments including ablation studies on five real-world datasets. Quantitative analysis, visualizations, and case studies verify the interpretability of DIRECT. Our code is available at: https://github.com/JacksonWuxs/DIRECT.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ekaterina Gilman, Francesca Bugiotti, Ahmed Khalid, Hassan Mehmood, Panos Kostakos, Lauri Tuovinen, Johanna Ylipulli, Xiang Su, Denzil Ferreira
{"title":"Addressing Data Challenges to Drive the Transformation of Smart Cities","authors":"Ekaterina Gilman, Francesca Bugiotti, Ahmed Khalid, Hassan Mehmood, Panos Kostakos, Lauri Tuovinen, Johanna Ylipulli, Xiang Su, Denzil Ferreira","doi":"10.1145/3663482","DOIUrl":"https://doi.org/10.1145/3663482","url":null,"abstract":"<p>Cities serve as vital hubs of economic activity and knowledge generation and dissemination. As such, cities bear a significant responsibility to uphold environmental protection measures while promoting the welfare and living comfort of their residents. There are diverse views on the development of smart cities, from integrating Information and Communication Technologies into urban environments for better operational decisions to supporting sustainability, wealth, and comfort of people. However, for all these cases, data is the key ingredient and enabler for the vision and realization of smart cities. This article explores the challenges associated with smart city data. We start with gaining an understanding of the concept of a smart city, how to measure that the city is a smart one, and what architectures and platforms exist to develop one. Afterwards, we research the challenges associated with the data of the cities, including availability, heterogeneity, management, analysis, privacy, and security. Finally, we discuss ethical issues. This article aims to serve as a “one-stop shop” covering data-related issues of smart cities with references for diving deeper into particular topics of interest.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140834479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Janet Layne, Qudrat E Alahy Ratul, Edoardo Serra, Sushil Jajodia
{"title":"Analyzing Robustness of Automatic Scientific Claim Verification Tools against Adversarial Rephrasing Attacks","authors":"Janet Layne, Qudrat E Alahy Ratul, Edoardo Serra, Sushil Jajodia","doi":"10.1145/3663481","DOIUrl":"https://doi.org/10.1145/3663481","url":null,"abstract":"<p>The coronavirus pandemic has fostered an explosion of misinformation about the disease, including the risk and effectiveness of vaccination. AI tools for automatic Scientific Claim Verification (SCV) can be crucial to defeat misinformation campaigns spreading through social media channels. However, over the past years, many concerns have been raised about the robustness of AI to adversarial attacks, and the field of automatic scientific claim verification is not exempt. The risk is that such SCV tools may reinforce and legitimize the spread of fake scientific claims rather than refute them. This paper investigates the problem of generating adversarial attacks for SCV tools and shows that it is far more difficult than the generic NLP adversarial attack problem. The current NLP adversarial attack generators, when applied to SCV, often generate modified claims with entirely different meaning from the original. Even when the meaning is preserved, the modification of the generated claim is too simplistic (only a single word is changed), leaving many weaknesses of the SCV tools undiscovered. We propose T5-ParEvo, an iterative evolutionary attack generator, that is able to generate more complex and creative attacks while better preserving the semantics of the original claim. Using detailed quantitative and qualitative analysis, we demonstrate the efficacy of T5-ParEvo in comparison with existing attack generators.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140842102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Teacher-Student Framework for Polyphonic Semi-supervised Sound Event Detection: Survey and Empirical Analysis","authors":"Zhor Diffallah, Hadjer Ykhlef, Hafida Bouarfa","doi":"10.1145/3660641","DOIUrl":"https://doi.org/10.1145/3660641","url":null,"abstract":"Polyphonic sound event detection refers to the task of automatically identifying sound events occurring simultaneously in an auditory scene. Due to the inherent complexity and variability of real-world auditory scenes, building robust detectors for polyphonic sound event detection poses a significant challenge. The task becomes further more challenging without sufficient annotated data to develop sound event detection systems under a supervised learning regime. In this paper, we explore the recent developments in polyphonic sound event detection, with a particular emphasis on the application of Teacher-Student techniques within the semi-supervised learning paradigm. Unlike previous works, we have consolidated and organized the fragmented literature on Teacher-Student techniques for polyphonic sound event detection. By examining the latest research, categorizing Teacher-Student approaches, and conducting an empirical study to assess the performance of each approach, this survey offers valuable insights and practical guidance for researchers and practitioners in the field. Our findings highlight the potential benefits of utilizing multiple learners, ensuring consistent predictions, and making thoughtful choices regarding perturbation strategies.","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140666643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suleyman Uslu, Davinder Kaur, S. Rivera, A. Durresi, M. Babbar‐Sebens, J. Tilt
{"title":"A Trustworthy and Responsible Decision-Making Framework for Resource Management in Food-Energy-Water Nexus: A Control-Theoretical Approach","authors":"Suleyman Uslu, Davinder Kaur, S. Rivera, A. Durresi, M. Babbar‐Sebens, J. Tilt","doi":"10.1145/3660640","DOIUrl":"https://doi.org/10.1145/3660640","url":null,"abstract":"This paper introduces a hybrid framework for trustworthy and responsible natural resource management, aimed at building bottom-up trust to enhance cooperation among decision makers in the Food, Energy, and Water sectors. Cooperation is highly critical for the adoption and application of resource management alternatives (solutions), including those generated by AI-based recommender systems, in communities due to significant impact of these sectors on the environment and the economic productivity of affected communities. While algorithms can recommend solutions, effectively communicating and gaining community acceptance of these solutions is crucial. Our research stands out by emphasizing the collaboration between humans and machines, which is essential for addressing broader challenges related to climate change and the need for expert trade-off handling in the management of natural resources. To support future decision-making, we propose a successful control-theory model based on previous decision-making and actor behavior. We utilize control theory to depict how community decisions can be affected by how much individuals trust and accept proposed solutions on irrigation water rights and crop operations in an iterative and interactive decision support environment. This model interacts with stakeholders to collect their feedback on the acceptability of solutions, while also examining the influence of consensus levels, trust sensitivities, and the number of decision-making rounds on the acceptance of proposed solutions. Furthermore, we investigate a system of multiple decision-making and explore the impact of learning actors who adjust their trust sensitivities based on solution acceptance and the number of decision-making rounds. Additionally, our approach can be employed to evaluate and refine potential policy modifications. Although we assess potential outcomes using hypothetical actions by individuals, it is essential to emphasize our primary objective of developing a tool that accurately captures real human behavior and fosters improved collaboration in community decision-making. Ultimately, our aim is to enhance the harmony between AI-based recommender systems and human values, promoting a deeper understanding and integration between the two.","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140669540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lo Pang-Yun Ting, Rong Chao, Chai-Shi Chang, Kun-Ta Chuang
{"title":"An Explore-Exploit Workload-bounded Strategy for Rare Event Detection in Massive Energy Sensor Time Series","authors":"Lo Pang-Yun Ting, Rong Chao, Chai-Shi Chang, Kun-Ta Chuang","doi":"10.1145/3657641","DOIUrl":"https://doi.org/10.1145/3657641","url":null,"abstract":"<p>With the rise of Internet-of-Things devices, the analysis of sensor-generated energy time series data has become increasingly important. This is especially crucial for detecting rare events like unusual electricity usage or water leakages in residential and commercial buildings, which is essential for optimizing energy efficiency and reducing costs. However, existing detection methods on large-scale data may fail to correctly detect rare events when they do not behave significantly differently from standard events or when their attributes are non-stationary. Additionally, the capacity of computational resources to analyze all time series data generated by an increasing number of sensors becomes a challenge. This situation creates an emergent demand for a workload-bounded strategy. To ensure both effectiveness and efficiency in detecting rare events in massive energy time series, we propose a heuristic-based framework called <i>HALE</i>. This framework utilizes an explore-exploit selection process that is specifically designed to recognize potential features of rare events in energy time series. <i>HALE</i> involves constructing an attribute-aware graph to preserve the attribute information of rare events. A heuristic-based random walk is then derived based on partial labels received at each time period to discover the non-stationarity of rare events. Potential rare event data is selected from the attribute-aware graph, and existing detection models are applied for final confirmation. Our study, which was conducted on three actual energy datasets, demonstrates that the <i>HALE</i> framework is both effective and efficient in its detection capabilities. This underscores its practicality in delivering cost-effective energy monitoring services.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140615375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CGKPN: Cross-Graph Knowledge Propagation Network with Adaptive Connection for Reasoning-Based Machine Reading Comprehension","authors":"Zhuo Zhao, Guangyou Zhou, Zhiwen Xie, Lingfei Wu, Jimmy Xiangji Huang","doi":"10.1145/3658673","DOIUrl":"https://doi.org/10.1145/3658673","url":null,"abstract":"<p>The task of machine reading comprehension (MRC) is to enable machine to read and understand a piece of text, and then answer the corresponding question correctly. This task requires machine to not only be able to perform semantic understanding, but also possess logical reasoning capabilities. Just like human reading, it involves thinking about the text from two interacting perspectives of semantics and logic. However, previous methods based on reading comprehension either consider only the logical structure of the text or only the semantic structure of the text, and cannot simultaneously balance semantic understanding and logical reasoning. This single form of reasoning cannot make the machine fully understand the meaning of the text. Additionally, the issue of sparsity in composition presents a significant challenge for models that rely on graph-based reasoning. To this end, a cross-graph knowledge propagation network (CGKPN) with adaptive connection is presented to address the above issues. The model first performs self-view node embedding on the constructed logical graph and semantic graph to update the representations of the graphs. Specifically, relevance matrix between nodes is introduced to adaptively adjust node connections in response to the challenge posed by sparse graph. Subsequently, CGKPN conducts cross-graph knowledge propagation on nodes that are identical in both graphs, effectively resolving conflicts arising from identical nodes in different views, and enabling the model to better integrate the logical and semantic relationships of the text through efficient interaction. Experiments on the two MRC datasets ReClor and LogiQA indicate the superior performance of our proposed model CGKPN compared to other existing baselines.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140614841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaojin Zhang, Lixin Fan, Siwei Wang, Wenjie Li, Kai Chen, Qiang Yang
{"title":"A Game-theoretic Framework for Privacy-preserving Federated Learning","authors":"Xiaojin Zhang, Lixin Fan, Siwei Wang, Wenjie Li, Kai Chen, Qiang Yang","doi":"10.1145/3656049","DOIUrl":"https://doi.org/10.1145/3656049","url":null,"abstract":"<p>In federated learning, benign participants aim to optimize a global model collaboratively. However, the risk of <i>privacy leakage</i> cannot be ignored in the presence of <i>semi-honest</i> adversaries. Existing research has focused either on designing protection mechanisms or on inventing attacking mechanisms. While the battle between defenders and attackers seems never-ending, we are concerned with one critical question: is it possible to prevent potential attacks in advance? To address this, we propose the first game-theoretic framework that considers both FL defenders and attackers in terms of their respective payoffs, which include computational costs, FL model utilities, and privacy leakage risks. We name this game the federated learning privacy game (FLPG), in which neither defenders nor attackers are aware of all participants’ payoffs. To handle the <i>incomplete information</i> inherent in this situation, we propose associating the FLPG with an <i>oracle</i> that has two primary responsibilities. First, the oracle provides lower and upper bounds of the payoffs for the players. Second, the oracle acts as a correlation device, privately providing suggested actions to each player. With this novel framework, we analyze the optimal strategies of defenders and attackers. Furthermore, we derive and demonstrate conditions under which the attacker, as a rational decision-maker, should always follow the oracle’s suggestion <i>not to attack</i>.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}