Rongchang Li, Tianyang Xu, Xiao-Jun Wu, Zhongwei Shen, Josef Kittler
{"title":"Perceiving Actions via Temporal Video Frame Pairs","authors":"Rongchang Li, Tianyang Xu, Xiao-Jun Wu, Zhongwei Shen, Josef Kittler","doi":"10.1145/3652611","DOIUrl":null,"url":null,"abstract":"<p>Video action recognition aims to classify the action category in given videos. In general, semantic-relevant video frame pairs reflect significant action patterns such as object appearance variation and abstract temporal concepts like speed, rhythm, etc. However, existing action recognition approaches tend to holistically extract spatiotemporal features. Though effective, there is still a risk of neglecting the crucial action features occurring across frames with a long-term temporal span. Motivated by this, in this paper, we propose to perceive actions via frame pairs directly and devise a novel Nest Structure with frame pairs as basic units. Specifically, we decompose a video sequence into all possible frame pairs and hierarchically organize them according to temporal frequency and order, thus transforming the original video sequence into a Nest Structure. Through naturally decomposing actions, the proposed structure can flexibly adapt to diverse action variations such as speed or rhythm changes. Next, we devise a Temporal Pair Analysis module (TPA) to extract discriminative action patterns based on the proposed Nest Structure. The designed TPA module consists of a pair calculation part to calculate the pair features and a pair fusion part to hierarchically fuse the pair features for recognizing actions. The proposed TPA can be flexibly integrated into existing backbones, serving as a side branch to capture various action patterns from multi-level features. Extensive experiments show that the proposed TPA module can achieve consistent improvements over several typical backbones, reaching or updating CNN-based SOTA results on several challenging action recognition benchmarks.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3652611","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Video action recognition aims to classify the action category in given videos. In general, semantic-relevant video frame pairs reflect significant action patterns such as object appearance variation and abstract temporal concepts like speed, rhythm, etc. However, existing action recognition approaches tend to holistically extract spatiotemporal features. Though effective, there is still a risk of neglecting the crucial action features occurring across frames with a long-term temporal span. Motivated by this, in this paper, we propose to perceive actions via frame pairs directly and devise a novel Nest Structure with frame pairs as basic units. Specifically, we decompose a video sequence into all possible frame pairs and hierarchically organize them according to temporal frequency and order, thus transforming the original video sequence into a Nest Structure. Through naturally decomposing actions, the proposed structure can flexibly adapt to diverse action variations such as speed or rhythm changes. Next, we devise a Temporal Pair Analysis module (TPA) to extract discriminative action patterns based on the proposed Nest Structure. The designed TPA module consists of a pair calculation part to calculate the pair features and a pair fusion part to hierarchically fuse the pair features for recognizing actions. The proposed TPA can be flexibly integrated into existing backbones, serving as a side branch to capture various action patterns from multi-level features. Extensive experiments show that the proposed TPA module can achieve consistent improvements over several typical backbones, reaching or updating CNN-based SOTA results on several challenging action recognition benchmarks.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.