Dmitriy G. Reunov, Anton A. Akhsakhalyan, Aram D. Akhsakhalyan, Nikolay I. Chkhalo, Roman A. Shaposhnikov, Yuri N. Drozdov
{"title":"Observation of quasi-Bragg scattering by Goebel mirrors","authors":"Dmitriy G. Reunov, Anton A. Akhsakhalyan, Aram D. Akhsakhalyan, Nikolay I. Chkhalo, Roman A. Shaposhnikov, Yuri N. Drozdov","doi":"10.1107/S1600576724004126","DOIUrl":"10.1107/S1600576724004126","url":null,"abstract":"<p>This paper reports the first observation of quasi-Bragg scattering from collimating Goebel mirrors in a real instrument. On the basis of the experimental data obtained and the numerical analysis performed, it is concluded that it is necessary to take into account the effect of quasi-Bragg scattering when constructing real devices with multilayer mirrors for use in X-ray diffractometry and in spectroscopy, especially for small-angle scattering with position-sensitive detectors.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"57 4","pages":"925-930"},"PeriodicalIF":5.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christoph U. Wildgruber, Shuo Qian, Serena H. Chen, Kenneth W. Herwig, Volker S. Urban, Hugh O'Neill
{"title":"A science-driven approach to optimize the design for a biological small-angle neutron scattering instrument","authors":"Christoph U. Wildgruber, Shuo Qian, Serena H. Chen, Kenneth W. Herwig, Volker S. Urban, Hugh O'Neill","doi":"10.1107/S1600576724004254","DOIUrl":"https://doi.org/10.1107/S1600576724004254","url":null,"abstract":"<p>Biological small-angle neutron scattering (SANS) instruments facilitate critical analysis of the structure and dynamics of complex biological systems. However, with the growth of experimental demands and the advances in optical systems design, a new neutron optical concept is necessary to overcome the limitations of current instruments. This work presents an approach to include experimental objectives (<i>i.e.</i> the science to be supported by a specific neutron scattering instrument) in the optimization of the neutron optical concept. The approach for a proposed SANS instrument at the Second Target Station of the Spallation Neutron Source at Oak Ridge National Laboratory, USA, is presented here. The instrument is simulated with the <i>McStas</i> software package. The optimization process is driven by an evolutionary algorithm using <i>McStas</i> output data, which are processed to calculate an objective function designed to quantify the expected performance of the simulated neutron optical configuration for the intended purpose. Each <i>McStas</i> simulation covers the complete instrument, from source to detector, including realistic sample scattering functions. This approach effectively navigates a high-dimensional parameter space that is otherwise intractable; it allows the design of next-generation SANS instruments to address specific scientific cases and has the potential to increase instrument performance compared with traditional design approaches.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"57 3","pages":"818-830"},"PeriodicalIF":6.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flávia Regina Estrada, Ariel Moreno-Gobbi, Dragan Damjanovic, Ducinei Garcia
{"title":"Polar orientation and extension in a novel crystallographic model for PbTiO3-based perovskites explaining the experimental ferroelectric thermal anomalies","authors":"Flávia Regina Estrada, Ariel Moreno-Gobbi, Dragan Damjanovic, Ducinei Garcia","doi":"10.1107/S1600576724003686","DOIUrl":"https://doi.org/10.1107/S1600576724003686","url":null,"abstract":"<p>PbTiO<sub>3</sub>-based ferroelectric solid-solution ceramics have been widely used for electromechanical devices. However, it is still challenging to separate and control the contributions to the electromechanical functionalities, mainly as a function of temperature, where thermal anomalies and phase transitions can be observed. This study investigates the ultrasonic velocity and attenuation and the dielectric, ferroelectric and structural features of Pb<sub>0.55</sub>Ca<sub>0.45</sub>TiO<sub>3</sub> ceramics from low temperatures (10 or 115 K) up to room temperature as an example of <i>A</i>-site isovalent substitution in PbTiO<sub>3</sub>. Such a combination of information makes possible the phenomenological deconvolution of the effects of ferroelectric domain wall pinning and structural features on spontaneous electric polarization. The room-temperature symmetry was determined as <i>Pna</i>2<sub>1</sub>. The results show that this model refined by the Rietveld method for synchrotron X-ray diffraction patterns from 115 K to room temperature can explain the polarization extension features of these materials during heating. This study shows a correlation between structural thermal anomalies and low-temperature electric polarization in PbTiO<sub>3</sub>-based ferroelectric ceramics.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"57 3","pages":"808-817"},"PeriodicalIF":6.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}